Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Amiloride cAMP ENaC Epithelial sodium channel Protein kinase A  (1)
  • Key words: Na/Pi-cotransport — Expression cloning — Duodenum — Brush border membrane —Xenopus laevis  (1)
  • 1
    ISSN: 1432-2013
    Keywords: Amiloride cAMP ENaC Epithelial sodium channel Protein kinase A
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract. The rate of Na+ (re)absorption across tight epithelia such as in distal kidney nephron and colon is to a large extent controlled at the level of the epithelial Na+ channel (ENaC). In kidney, antidiuretic hormone (ADH, vasopressin) stimulates the expression/activity of this channel by a cAMP/protein-kinase-A- (PKA-) mediated pathway. However, a clear upregulation of ENaC function by cAMP could not be reproduced with cloned channel subunits in the Xenopus oocyte expression system, suggesting the hypothesis that an additional factor is missing. In contrast, we show here that membrane-permeant cAMP can activate ENaC expressed in Xenopus oocytes (3.8-fold) upon replacement of the rat α-subunit by a new α-subunit cloned from guinea-pig colon (gpα). This α-subunit is 76% identical with its rat orthologue originating from ADH-insensitive rat colon. The biophysical fingerprints of the hybrid ENaC formed by this guinea-pig α-subunit together with rat β- and γ-subunits are indistinguishable from those of rat ENaC (rENaC). Injection of the PKA inhibitor PKI-(6–22)-amide into the oocyte had no effect on the basal activity of rat ENaC but inhibited the activity of gpα-containing hybrid ENaC and greatly decreased its stimulation by cAMP. This suggests that, unlike for rat ENaC, tonic PKA activity is required for basal function of gpα-containing ENaC and that PKA mediates its cAMP-induced activation. This regulatory behaviour is not common to all ENaCs containing an α-subunit cloned from an ADH-responsive tissue since xENaC, which was cloned from the ADH-sensitive Xenopus laevis A6 epithelia, is, when expressed in oocytes, resistant to cAMP, similar to rat ENaC. This study demonstrates that the PKA sensitivity of ENaC can depend on the nature of the ENaC α-subunit and raises the possibility that cAMP can stimulate ENaCs by different mechanisms.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1424
    Keywords: Key words: Na/Pi-cotransport — Expression cloning — Duodenum — Brush border membrane —Xenopus laevis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract. In a previous report we documented an increased Na+-dependent transport of inorganic phosphate (P i ) in Xenopus laevis oocytes injected with mRNA isolated from rabbit duodenum (Yagci et al., Pfluegers Arch. 422:211–216, 1992; ref 24). In the present study we have used expression cloning in oocytes to search for the cDNA/mRNA involved in this effect. The identified cDNA (provisionally named PiUS; for P i -uptake stimulator) lead to a 3-4-fold stimulation of Na+-dependent P i -uptake (10ng cRNA injected, 3–5 days of expression). Na+-independent uptake of P i was also affected but transport of sulphate and l-arginine (in the presence or absence of sodium) remained unchanged. The apparent K m -values for the induced Na+-dependent uptake were 0.26 ± 0.04 mm for P i and 14.8 ± 3.0 mm for Na+. The 1796 bp cDNA codes for a protein of 425 amino acids. Hydropathy analysis suggests a lack of transmembrane segments. In vitro translation resulted in a protein of 60 kDa and provided no evidence of glycosylation. In Northern blots a mRNA of ∼2 kb was recognized in various tissues including different intestinal segments, kidney cortex, kidney medulla, liver and heart. Homology searches showed no similarity to proteins involved in membrane transport and its control. In conclusion, we have cloned from a rabbit small intestinal cDNA library a novel cDNA encoding a protein stimulating P i -uptake into Xenopus laevis oocytes, but which is not a P i -transporter itself.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...