Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1438-2199
    Keywords: Amino acids ; Aminoethylcysteine ; Ketimines ; Iron chelates ; Autoxidation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Oxidation of aminoethylcysteine ketimine (AECK) is followed by the change of 296nm absorbance, by the O2 consumption and by the HPLC analysis of the oxidation products. The oxidation is strongly inhibited by the addition of superoxide dismutase (SOD) but not by hydroxyl radical scavengers or catalase. Addition of EDTA or o-phenanthroline (OPT) favours the oxidation, probably by keeping contaminating metals in solution at the pH studied. Addition of Fe3+ ions strongly accelerates the oxidation in the presence of EDTA or OPT. AECK reacts stoichiometrically with OPT-Fe3+ complex producing the Fe2+ complex which is not reoxidised by bubbling O2. HPLC analyses of the final oxidation products reacting with 2,4-dinitrophenylhydrazine (DNPH) confirm the AECK sulfoxide as the main product of the slow spontaneous oxidation. The detection of other oxidation products when the reaction is speeded up by the addition of the OPT-Fe3+ complex, suggests that the oxidation takes place essentially on the carbon portion of the AECK molecule in the side of the double bond. On the basis of the results presented here, a scheme of reactions is illustrated which starts with the transfer of one electron from AECK to a contaminating metal ion (possibly Fe3+) producing the radical AECK• as the initiator of a self propagating reaction. The radical AECK• reacting with O2 starts a series of reactions accounting for most of the products detected.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1438-2199
    Keywords: Amino acids ; Ketimine ; Cystathionine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary S-(2-oxo-2-carboxyethyl)homocysteine (OCEHC), produced by the enzymatic monodeamination of cystathionine, is known to cyclize producing the seven membered ring of cystathionine ketimine (CK) which has been recognized as a cystathionine metabolite in mammals. Studies have been undertaken in order to find the best conditions of cyclization of synthetic OCEHC to CK and for the preparation of solid CK salt product. It has been found that ring closure takes place at alkaline pH and is highly accelerated in 0.5 M phosphate buffer. The sodium salt of CK has been prepared by controlled additions of NaOH to water-ethanol solution of OCEHC under N2 atmosphere. A solid product is obtained which, dissolved in water, shows the spectral features of CK. Solutions of the sodium salt of CK show the presence of a pH depending reversible equilibrium with the open OCEHC form. Plot of the absorbance at 296 nm in function of pH indicates that at pH 9 the compound is completely cyclized while at pH 6 is totally in the open OCEHC form. At intermediate pHs variable ratios between the two forms occur. According to the results obtained by the spectral analysis, HPLC assays of the sodium salt of CK show different patterns depending on the pH of the elution buffer.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1438-2199
    Keywords: Amino acids ; Aminoethylcysteine ketimine dimer ; Hydrogen peroxide ; Superoxide anion ; Hydroxyl radical
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The prominent spontaneous reaction of aminoethylcysteine ketimine in the neutral pH range is the concentration-dependent dimerization (Hermann, 1961). The carboxylated dimer first produced loses the free carboxyl yielding the more stable decarboxylated dimer (named simply the dimer in this note). In the search for a possible biochemical activity of this uncommon tricyclic compound we have assayed whether it could interact with oxygen reactive species (H2O2, O2 −,•OH) thus exhibiting a scavenging effect of possible biomedical interest. The dimer interacts with H2O2 producing compounds detectable by chromatographic procedures. The presence of Fe2+ stimulates the oxidative reaction by yielding the hydroxyl radical (the Fenton reaction). Using the system xanthine oxidase-xanthine as superoxide producer, the dimer oxidation by O2 − has also been documented. Among the oxidation products the presence of taurine and cysteic acid has been established. Identification of remaining oxidation products and investigation of the possible function of the dimer as a biological scavenger of oxygen reactive species are now oncoming.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...