Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 120 (1979), S. 105-112 
    ISSN: 1432-072X
    Keywords: Physarum polycephalum ; Myxamoebae ; Encystment ; Differentiation ; Induction ; Mannose ; Aminopeptidases ; Acid proteases
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Encystment of Physarum polycephalum myxamoebae, grown under nearly identical physiological conditions as plasmodia is induced by transfer to a salts medium containing 0.5 M mannitol or mannose. After 24 h induction approximately 50% of amoebae had differentiated to cells which were identified to be young cysts by light and electron microscopy. Several other polyols, sugars, biogenic amines, and a starvation period from 24 h to one week caused no reproducible cyst formation. In contrast to the formation of dormant forms in the plasmodial stage of the life cycle, the induction of cysts and their germination to amoebae are not inhibited neither by actinomycin C nor by cycloheximide. In addition, the isoenzyme spectra of aminopeptidases and acid proteases remain nearly identical in growing and differentiating amoebae.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 260 (1990), S. 409-414 
    ISSN: 1432-0878
    Keywords: Kidney ; Peroxisomes ; Marginal plates ; Electron microscopy ; Freeze-etching ; DAB-cytochemistry ; Bovine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The ultrastructure of peroxisomes in the proximal nephron tubules of bovine kidney cortex was studied using ultrathin-sectioning, diaminobenzidine cytochemistry for the visualization of catalase, and by freeze-fracture. Peroxisomes in this nephron segment are up to 1.5 μm in diameter and exhibit a peculiar angular shape, which is probably related to the occurrence of multiple straight plate-like inclusions (marginal plates) in the matrix of peroxisomes; they lie directly underneath the peroxisomal membranes. The peroxisomal membrane in such regions follows the outline of the marginal plate. The peculiar shape of peroxisomes allows their unequivocal identification in freeze-fracture preparations. Peroxisomal membranes are recognized by their flat, often rectangular appearance. Intramembrane particles are much more numerous on P-fracture faces than on E-fracture faces. A crystalline lattice-structure with a periodicity of approximately 10 nm can be observed on the flat rectangular areas of E-fracture faces. This lattice structure is intensified after prolonged freeze-etching. Intramembranous particles seem to be superimposed over this pattern. The crystalline pattern on the E-fracture faces of peroxisomal membranes is probably not a membrane structure but it reveals the structure of the membrane-associated marginal plates. A cast of the marginal-plate surface may be generated by a collapse of the peroxisomal membrane half onto the immediately underlying matrix inclusion.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...