Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1572-879X
    Keywords: Ammonia synthesis ; Ru-zeolite ; metal clusters ; conversion measurements
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Na-Y zeolite was cation exchanged with Ru(NH3)6Cl3 yielding at 25% exchange level a light-purple solid which was active in ammonia synthesis at atmospheric pressure. Pulse conversion experiments show that the catalyst stores nitrogen as it was observed with the conventional iron catalyst. At 810 K the conversion reached about 20% of the maximum conversion of the iron catalyst. The catalyst deactivated reversibly within 30 h due to agglomeration. The active species in the catalyst is most likely a cluster-like Ru metal particle prevented from sintering under the reducing conditions of catalysis by the zeolite framework.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1572-879X
    Keywords: Ammonia synthesis ; supported ruthenium catalyst ; dispersed ruthenium ; instationary kinetics ; lifetime effects ; ruthenium oxidation ; surface analysis ; XPS
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Reaction of Ru(NH3)6Cl3 with Na-A and K-A zeolites yielded oligomeric amino-oxo-complexes supported on the zeolite. Controlled thermal activation under hydrogen converted the precursor in a two-step reaction into an active catalyst with good long-term stability and resistance against small doses of oxygen poison. Several nanometers sized Ru metal particles are chemically bonded to the zeolite surface which provides in the K form an alkali promoter at the metal-zeolite interface. Extensive oxidation breaks the metal-support anchoring and re-reduction produces Ru metal particles sintering rapidly into large metal crystals with only small residual catalytic activity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...