Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2013
    Keywords: Distal renal tubule ; Amphiuma ; Basolateral membrane potential ; Volume reabsorption ; Calcium ; Diuretics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In the distal tubule of the isolated kidney of Amphiuma net volume reabsorption (split-oil droplet method) and basolateral membrane potential (Ψ b ) were measured. Luminal perfusion solution could be changed rapidly from 108 mmol·l−1 NaCl plus 0.1 mmol·l−1 calcium to solutions containing 103 or 97 mmol·l−1 NaCl plus 3.6 or plus 7.2 mmol·l−1 calcium. Furthermore, 10−4 mol·l−1 furosemide or chlorothiazide were applied luminally. (1) Addition of 7.2 mmol·l−1 calcium hyperpolarized Ψ b from −73.4 mV to −108.3 mV and inhibited net volume reabsorption. (2) Similarly, when furosemide was injected, Ψ b was hyperpolarized and net volume reabsorption reduced. Application of both high calcium and furosemide further inhibited volume reabsorption. (3) The effects of chlorothiazide were similar to those of furosemide. However, when both high calcium and chlorothiazide were administered Ψ b and volume reabsorption were almost normalized. (4) The data are consistent with the hypothesis that calcium and the diuretics interfere primarly with chloride uptake across the luminal membrane and thus reduce sodium chloride transport. When chlorothiazide in the presence of high luminal calcium almost normalized chloride transport, it is likely that its effects were by stimulating calcium transport and thus increasing intracellular calcium activity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1424
    Keywords: corneal endothelium ; cell culture ; intracellular potential ; pH regulation ; bicarbonate ; bicarbonate-sodium cotransport ; lithium ; stilbenes ; amiloride ; ouabain
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary Usin gintracellular microelectrode technique, the response of the voltageV across the plasma membrane of cultured bovine corneal endothelial cells to changes in sodium and bicarbonate concentrations was investigated. (1) The electrical response to changes in [HCO 3 − ] o (depolarization upon lowering and hyperpolarization upon raising [HCO 3 − ] o ) was dependent on sodium. Lithium could fairly well be substituted for sodium, whereas potassium or choline were much less effective. (2) Removal of external sodium caused a depolarization, while a readdition led to a hyperpolarization, which increased with time of preincubation in the sodium-depleted medium. (3) The response to changes in [Na+] o was dependent on bicarbonate. In a nominally bicarbonate-free medium, its amplitude was decreased or even reversed in sign. (4) Application of SITS or DIDS (10−3 m) had a similar effect on the response to sodium as bicarbonate-depleted medium. (5) At [Na+] o =151mm and [HCO 3 − ] o =46mm, the transients ofV depended, with 39.0±9.0 (sd) mV/decade, on bicarbonate and, with 15.3±5.8 (sd) mV/decade, on sodium. (6) After the preincubation of cells with lithium, replacement of Li by choline led to similar effects as the replacement of sodium by choline, though the response ofV was smaller with Li. This response could be reduced or reversed by the removal of bicarbonate or by the application of SITS. (7) Amiloride (10−3 m) caused a reversible hyperpolarization of the steady-state potential by 8.5±2.6 mV (sd). It did not affect the immediate response to changes in [Na+] o or [HCO 3 − ] o , but reduced the speed of regaining the steady-state potential after a change in [HCO 3 − ] o . (8) Ouabain (10−4 m) caused a fast depolarization of −6.8±1.1 (sd) mV, which was followed by a continuing slower depolarization. The effect was almost identical at 10−5 m. (9) It is suggested, that corneal endothelial cells possess a cotransport for sodium and bicarbonate, which transports net negative charage with these ions. It is inhibitable by stilbenes, but not directly affected by amiloride or ouabain. Lithium is a good substitute for sodium with respect to bicarbonate transport and is transported itself. In addition, the effect of amiloride provides indirect evidence for the existence of a Na+/H+-antiport. A model for the transepithelial transport of bicarbonate across the corneal endothelium is proposed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1424
    Keywords: intracellular pH ; sodium bicarbonate cotransport ; Na+/H+ antiport ; Cl−/HCO 3 − exchange ; amiloride ; DIDS ; cornea ; endothelium ; cell culture
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary Intracellular pH (pH i ) in confluent monolayers of cultured bovine corneal endothelial cells was determined using the pH-dependent absorbance of intracellularly trapped 5(and 6)carboxy-4′,5′-dimethylfluorescein. Steady-state pH was 7.05±0.1 in the nominal absence of bicarbonate, and 7.15±0.1 in the presence of 28mm HCO 3 − /5% CO2. Following an acid load imposed by a NH4Cl prepulse, pH i was regulated in the absence of HCO 3 − by a Na+-dependent process inhibitable to a large extent by 1mm amiloride and 0.1mm dimethylamiloride. In the presence of 28mm HCO 3 − /5% CO2, this regulation was still dependent on Na+, but the inhibitory potency of amiloride was less. DIDS (1mm) partially inhibited this regulation in the presence, but not in the absence of bicarbonate. With cells pretreated with DIDS, amiloride was as effective in inhibiting recovery from acid load as in the absence of HCO 3 − . The presence of intracellular Cl− did not appreciably affect this recovery, which was still sensitive to DIDS in the absence of Cl−. Removal of extracellular Na+ led to a fall of pH i , which was greatly attenuated in the absence of HCO 3 − . This acidification was largely reduced by 1mm DIDS, but not by amiloride. Cl removal led to an intracellular alkalinization in the presence of HCO 3 − . The presence of a Cl−/HCO 3 − exchanger was supported by demonstrating DIDS-sensitive36Cl− uptake into confluent cell monolayers. Thus, bovine corneal endothelial cells express three processes involved in intracellular pH regulation: an amiloride-sensitive Na+/H− antiport, a Na−−HCO 3 − symport and a Cl−/HCO 3 − exchange, the latter two being DIDS sensitive.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...