Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Rice blast  (2)
  • Amplifiedfragment length polymorphism (AFLP)  (1)
  • 1
    ISSN: 1432-2242
    Keywords: Key words Disease resistance ; Rice blast ; RFLPs ; Recombinant inbred lines ; Pre-isogenic lines
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract To increase the available set of near-isogenic lines (NILs) for blast-resistance in rice, we have developed a general method for establishing NILs from populations of fixed recombinants that have been used for gene mapping. We demonstrated the application of this method by the selection of lines carrying genes from the rice cultivar Moroberekan. Moroberekan is a West African japonica cultivar that is considered to have durable resistance to rice blast. Multiple genes from Moroberekan conferring complete and partial resistance to blast have previously been mapped using a recombinant inbred (RI) population derived from a cross between Moroberekan and the highly and broadly susceptible indica cultivar CO39. To analyze individual blast-resistance genes, it is desirable to transfer them individually into a susceptible genetic background. This RI population, and the associated data sets on blast reaction and restriction fragment length polymorphism (RFLP) genotypes, were used for selection of lines likely to carry individual blast-resistance genes and a minimum number of chromosomal segments from Moroberekan. Because skewed segregation in the RI population favored CO39 (indica) alleles, resistant lines carrying 8.7–17.5% of Moroberekan alleles (the proportion expected after two or three backcrosses) could be selected. We chose three RI lines carrying different complete resistance genes to blast and two RI lines carrying partial resistance genes to blast as potential parents for the development of NILs. These lines were subjected to genetic analysis, which allowed clarification of some issues that could not be resolved during the initial gene-mapping study.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2242
    Keywords: Disease resistance ; Rice blast ; RFLPs ; Recombinant inbred lines ; Pre-isogenic lines
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract To increase the available set of near-isogenic lines (NILs) for blast-resistance in rice, we have developed a general method for establishing NILs from populations of fixed recombinants that have been used for gene mapping. We demonstrated the application of this method by the selection of lines carrying genes from the rice cultivar Moroberekan. Moroberekan is a West African japonica cultivar that is considered to have durable resistance to rice blast. Multiple genes from Moroberekan conferring complete and partial resistance to blast have previously been mapped using a recombinant inbred (RI) population derived from a cross between Moroberekan and the highly and broadly susceptible indica cultivar CO39. To analyze individual blast-resistance genes, it is desirable to transfer them individually into a susceptible genetic background. This RI population, and the associated data sets on blast reaction and restriction fragment length polymorphism (RFLP) genotypes, were used for selection of lines likely to carry individual blast-resistance genes and a minimum number of chromosomal segments from Moroberekan. Because skewed segregation in the RI population favored CO39 (indica) alleles, resistant lines carrying 8.7–17.5% of Moroberekan alleles (the proportion expected after two or three backcrosses) could be selected. We chose three RI lines carrying different complete resistance genes to blast and two RI lines carrying partial resistance genes to blast as potential parents for the development of NILs. These lines were subjected to genetic analysis, which allowed clarification of some issues that could not be resolved during the initial gene-mapping study.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2242
    Keywords: Key words Disease resistance ; Rice (Oryza sativa L.) ; Rice blast (Pyricularia oryzae Cav.; Pyricularia grisea Sacc.; Magnaporthe grisea) ; Amplifiedfragment length polymorphism (AFLP) ; Sequence tagged site (STS) ; Gene mapping
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  A recombinant inbred line derived from a cross between CO39 and ‘Moroberekan’, RIL276, was found to be resistant to lineage 44 isolates of Pyricularia grisea in the Philippines. One hundred F2 individuals were obtained from a backcross of RIL276 and CO39. Phenotypic analysis showed that RIL276 carries a single locus, tentatively named Pi44(t), conferring complete resistance to lineage 44 isolates of P. grisea. RFLP probes, STS primers and AFLP markers were applied to identify DNA markers linked to Pi44(t). Neither RFLP nor STS-PCR analysis gave rise to DNA markers linked to the locus. Using bulk segregant AFLP analysis, however, two dominant AFLP markers (AF348 and AF349) linked to Pi44(t) were identified. AF349 and AF348 were located at 3.3±1.5 cM and 11±3.5 cM from Pi44(t), respectively. These markers were mapped on chromosome 11 using an F2 population derived from a cross between ‘Labelle’ and ‘Black Gora’. The location of AF348 on chromosome 11 was confirmed using another F2 mapping population derived from IR40931-26-3-3-5/ PI543851. DNA products at the loci linked to Pi44(t) were amplified from RIL276, ‘Labelle’ and PI543851 using the same primer pairs used to amplify AF349 and AF348. Sequence analysis of these bands showed 100% identity between lines. This result indicates that these AFLP markers could be used for the comparison of maps or assignment of linkage groups to chromosomes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...