Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0568
    Keywords: Key words γ-Glutamyl transpeptidase ; Alkaline phosphatase ; Blood-brain barrier ; Pial microvessels ; Astrocytes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Pial microvessels have several important blood-brain barrier (BBB) characteristics in common with cerebral microvessels, despite lacking their astrocytic ensheathment. We have therefore determined whether they have the same distribution of two enzymes, γ-glutamyl transpeptidase (GGTP) and alkaline phosphatase, both of which are known to be astrocyte-dependent. GGTP was absent from all rat pial microvessels but strongly present in brain cortical capillaries. Alkaline phosphatase was heterogeneously expressed in pial microvessels, including capillaries, but strongly positive in brain cortical capillaries. Diffusible, inductive factors produced by astrocytes could account for these differences in enzyme distribution between the two vessel types. Furthermore, differences in expression between the two markers may reflect their differing sensitivities to the astrocytic factors. Caution is urged in the common usage of the pial microvessel as a model system in BBB studies.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0878
    Keywords: Key words: Pial microvessels ; Optic nerve ; Blood-brain barrier ; Anionic sites ; Lectin-gold ; Cationic colloidal gold ; Enzyme digestion ; Rat (Sprague Dawley)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract. Pial microvessels have commonly been used in studies of the blood-brain barrier because of their relative accessibility. To determine the validity of using the pial microvessel as a model system for the blood-brain barrier, we have extended the comparison of pial and cerebral microvessels at the molecular level by a partial characterization of the glycocalyx of pial endothelial cells, in view of the functional importance of anionic sites within the glycocalyx. Rat optic nerves were fixed by vascular perfusion. Anionic sites on the endothelium were labelled with cationic colloidal gold by means of post- and pre-embedding techniques. The effects of digestion of ultrathin sections on subsequent gold labelling was quantified following their treatment with a battery of enzymes. Biotinylated lectins, viz. wheat germ agglutinin and concanavalin A with streptavidin gold, were employed to identify specific saccharide residues. The results demonstrate that the luminal glycocalyx of pial microvessels is rich in sialic-acid-containing glycoproteins. Neuraminidase, which is specific for N-acetylneuraminic (sialic) acid, and papain (a protease with a wide specificity) significantly reduce cationic colloidal gold binding to the luminal endothelial cell plasma membrane. Wheat germ agglutinin (with an affinity for sialic acid) binds more to the luminal than abluminal plasma membrane, whereas concanavalin A, which binds mannose, binds more to the abluminal surface. Similar results have been obtained for cerebral cortical endothelial cells. With respect to these molecular characteristics, therefore, the pial and cortical microvessels appear to be the same. However, since the two vessel types differ in other respects, caution is urged regarding the use of pial microvessels to investigate the blood-brain barrier.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...