Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Anolis carolinensis  (2)
  • Fine structure  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 111 (1970), S. 15-31 
    ISSN: 1432-0878
    Keywords: Subcommissural organ ; Toads ; Apical secretion ; Fine structure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The ependymal cells of the toad subcommissural organ produce pale and dense secretory granules. Both types of granules are mainly concentrated in the apical cytoplasm and in the perinuclear region. Pale and dense granules are synthesized by and packed in the rough endoplasmic reticulum, bypassing the step of the Golgi apparatus. The apical cytoplasm of some subcommissural ependymal cells protrudes into the ventricle. All the cells project a few cilia and numerous slender, long microvilli into the ventricular lumen. Contacting the cilia and the microvilli there is a filamentous material identical to that observed in the fibre of Reissner at the aqueduct of Sylvius. In addition to filaments, the fibre of Reissner contains vacuolar formations. The fibre is surrounded by numerous ependymal cilia, some of which are embedded in the filamentous material of the fibre. The presence of numerous microvilli projected into the ventricle and the large number of vesicles scattered in the supranuclear cytoplasm seem to indicate that the subcommissural organ may have absorption functions. The fact that the intercellular space of the ependymal layer of the subcommissural organ is not separated from the ventricular lumen by tight junctions but by zonulae adhaerentes could indicate that the cerebrospinal fluid penetrates these intercellular spaces bathing all sides of the ependymal cells. The presence in the ependymal cells of vesicles opening into the intercellular space would be in agreement with the latter possibility. There are some ultrastructural differences between the ependymal cells of the cephalic end of the subcommissural organ and those of the caudal end. A critical analysis of Reissner's fibre formation is made.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 111 (1970), S. 32-50 
    ISSN: 1432-0878
    Keywords: Subcommissural organ ; Toads ; Basal secretion ; Fine structure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The basal processes of the subcommissural ependymal cells contain filaments, microtubules, mitochondria and numerous pale and dense secretory granules. Both types of secretory granules are more numerous in the dilated portions of the ependymal processes. It is postulated that the periodical dilatations filled with secretory granules are responsible for the “rosary” appearance of the ependymal processes when stained with aldehyde fuchsin or chrome alum-hematoxylin. The ependymal processes of some ependymal subcommissural cells end on the external limiting membrane which covers the brain surface. The ependymal endings contain, among other structures, secretory granules and cisternae of the rough endoplasmic reticulum; this suggests that the secretory material may be locally synthetized. The presence in the subarachnoid space, close to the ependymal endings, of a particular type of blood capillaries supports the possibility of a vascular release of the secretory material present in the ependymal endings. The processes of other subcommissural ependymal cells end on blood capillaries localized in the subependymal neuropile. These capillaries have a distinctive perivascular space, where the external perivascular basement membrane is covered by a continuous “cuff” formed by ependymal endings containing secretory granules. Here again, the vascular release of the ependymal secretion seems very likely. Lastly, a third group of ependymal processes end on cavities lined by a basement membrane. It is thought that these cavities are “prolongations” of the perivascular space of the subependymal capillaries; this would contribute to establish numerous ependymo-vascular connections despite the scarce number of blood vessels. Some evidence supporting the possibility that the ependymal cells of the subcommissural organ are innervated is presented.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 198 (1979), S. 411-426 
    ISSN: 1432-0878
    Keywords: Intermediate lobe ; Hypophysis ; Ultrastructure ; Colour change ; Control mechanisms ; Anolis carolinensis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The ultrastructure of the intermediate lobe of the hypophysis was studied in Anolis carolinensis with the use of a threefold aldehyde fixative. Lizards with a brown skin were selected. The possibility of two types of secretory cells is discussed; neither cell type is innervated. Type I cells are rarely found and contain dense granules approximately 0.3 μm in diameter; Type II cells vary widely in secretory activity. Most of the Type II cells contain a large number of dense secretory granules (up to about 1.3 μm in diameter) almost filling the cytoplasm. Rough endoplasmic reticulum (RER), Golgi apparatus and mitochondria are poorly developed. Only some of these cells show signs suggesting a high secretory activity, namely a well developed RER, Golgi apparatus and numerous mitochondria. In these cells the RER sometimes forms large intracisternal droplets (up to 7 μm in diameter). Two of the animals exhibited a more uniform, high secretory activity. Large (about 2 μm in diameter), pale vacuoles, probably of extracellular character, were found mostly in the vicinity of the perivascular septum. Their role in the release of MSH is discussed. The present data, which are discussed with reference to earlier findings (Forbes, 1972), form the morphological basis for an experimental study on regulation of MSH release (Larsson et al., 1979).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 199 (1979), S. 1-23 
    ISSN: 1432-0878
    Keywords: Neuro-intermediate lobe ; Hypophysis ; Disconnection ; Ultrastructure ; Colour change ; Control mechanisms ; Anolis carolinensis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Morphological changes in the disconnected neuro-intermediate lobe were studied in the lizard, Anolis carolinensis from the 2nd to the 14th post-operative day using a threefold aldehyde fixative (Rodríguez, 1969). Two phases of colour change capacity were exhibited: Phase I started immediately after the transection, lasted for 6 days (mean) and was characterised by an excessive MSH release (brown skin). This phase proceeded gradually into Phase II, designated by an interruption of the MSH release (green skin). The degenerative processes and final elimination of neurons in the disconnected neural lobe propagate in a rostro-caudal direction from the transected area. The aminergic fibres (Type II) disappear within 2 days postoperatively, whereas the degeneration continues for more than 10 days in the peptidergic fibres (Type III, IV and V). The glia cells (ependyma and pituicytes) serve as very active macrophages, engulfing fragments of axons already affected by autolysis and transferring them into glial lysosomes. No apparent morphological changes occur in the shift from Phase I to II. The great majority of the secretory cells of the intermediate lobe are not affected by degenerative processes and appear to be markedly activated by the stalk transection. They exhibit numerous mitochondria, well-developed Golgi complexes forming numerous Golgi vesicles and extensive parallel cisternae of the rough endoplasmic reticulum, sometimes forming large intracisternal droplets (7 μm in diameter). Numerous pale vacuoles are seen, especially toward the intact capillaries, suggesting their coupling to the MSH release by extension of the active membrane area toward the perivascular septum. The number of these vacuoles is very markedly reduced in Phase II (no release), whereas the formation of new granules seems to proceed in early stages. The interruption of the MSH release implies a successive refilling of gradually growing secretory granules and a concomitant reduction in the development of the synthetic apparatus. Mechanisms probably involved in the control of the synthesis and release of MSH are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...