Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Anthracycline analogs  (1)
  • aminolevulinic acid  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Cancer chemotherapy and pharmacology 37 (1996), S. 472-478 
    ISSN: 1432-0843
    Keywords: Key words N-Benzyladriamycin-14-valerate ; Pharmacology ; Anthracycline analogs
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Lipophilic N-alkylanthracyclines such as AD 198 (N-benzyladriamycin-14-valerate) or AD 201 [N,N-di-(n-propyl)adriamycin-14-valerate], which exert their cytotoxicity through mechanisms which are not yet fully defined, possess inherent abilities to circumvent multidrug resistance in vitro and in vivo, possibly through alterations in normal intracellular drug trafficking. As part of structure-activity studies with this class of agent, we have now examined the pharmacology of AD 202 [N,N-di(n-butyl)adriamycin-14-valerate], another analog possessing superior antitumor activity to doxorubicin in vivo and an ability to circumvent multidrug resistance in vitro. Following the administration of AD 202 (20 mg/kg, i.v.) to anesthetized rats, rapid drug distribution (T1/2 5 min) was followed by more gradual elimination (T1/2 3.6 h). Plasma clearance of AD 202 (224±63.6 ml/min per kg) and steady state volume of distribution (25.7±11.1 l/kg) were indicative of extensive tissue sequestration and/or a large degree of extra-hepatic metabolism. The parent drug predominated in plasma until 20 min, thereafter N,N-di(n-butyl)adriamycin became the principal circulating anthracycline. The systemic exposure to this biotransformation product (area under the plasma concentration-time curve from time zero to 480 min AUC0-480 28 1672 ng ⋅ min/ml) was 〉tenfold higher than for the other detected plasma products (N-butyladriamycin-14-valerate, N-butyladriamycin, and three unidentified fluorescent signals; P1-3). Total urinary elimination over 8 h was limited (1.9% of dose), occurring predominantly as N,N-di(n-butyl)adriamycin (1.2% of dose), N-butyladriamycin (0.4% of dose), and their corresponding 13-carbinol metabolites (〈0.1% of dose each). Low levels of adriamycin (ADR), aglycones and two unidentified products were also seen. Parental AD 202 was found in urine only up to 1 h. By contrast, hepatic elimination of parent drug was seen, albeit at low levels, through 8 h. Excretion by this route (22% of dose) occurred principally as N-butyladriamycin (8% of dose), N-butyladriamycinol (2.1% of dose) with lower levels of N,N-di(n-butyl)adriamycin (1.6% of dose), N,N-di(n-butyl)adriamycin (0.8% of dose), and aglycones (4.3% of dose, combined). Other products included ADR (1.1% of dose) and two unidentified signals (3.4% of dose, combined). The relatively poor mass balance in these studies is attributed to prolonged intracellular retention (elimination T1/2 24.2 h) of N,N-di(n-butyl)adriamycin. Thus, in common with other N-alkylanthracyclines, the pharmacology of AD 202 is complex but its therapeutic properties clearly are not derived from an ADR prodrug effect. Significant differences continue to be noted as to the metabolic fate of congeners of this class of anthracycline analogs.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-904X
    Keywords: aminolevulinic acid ; intravesical ; pharmacokinetics ; photodiagnosis ; bladder ; cancer
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Purpose. To examine the stability and systemic absorption of aminolevulinic acid (ALA) in dogs during intravesical administration. Methods. Nine dogs received an intravesical dose of ALA either with no prior treatment, after receiving ammonium chloride for urinary acidification, or after receiving sodium bicarbonate for urinary alkalinization. Urine and blood samples collected during and after administration were monitored for ALA using an HPLC assay developed in our laboratories. Concentrations of pyrazine 2,5-dipropionic acid, the major ALA degradation product, and radiolabeled inulin, a nonabsorbable marker for urine volume, were also determined. Results. Less than 0.6% of intravesical ALA doses was absorbed into plasma. Urine concentrations decreased to 37% of the initial concentration during the 2 hour instillation. Decreases in urinary ALA and radiolabeled inulin concentrations were significantly correlated, indicating that urine dilution accounted for over 80% of observed decreases in urinary ALA. ALA conversion to pyrazine 2,5-dipropionic acid was negligible. Conclusions. These studies demonstrate that ALA is stable and poorly absorbed into the systemic circulation during intravesical instillation. Future studies utilizing intravesical ALA for photodiagnosis of bladder cancer should include measures to restrict fluid intake as a means to limit dilution and maximize ALA concentrations during instillation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...