Library

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2072
    Keywords: 5-Hydroxytryptamine ; Antidepressants ; Neuroleptics ; Presynaptic receptors ; 5-HT uptake
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The effect of antidepressant and neuroleptic drugs on the electrically evoked release of serotonin (5-HT) was investigated in rat brain cortical slices preincubated with 0.1 μmol/l 3H-5-HT. Zimelidine, trazodone, clomipramine, doxepin, and viloxazine (1 μmol/l each) enhanced the electrically-induced 3H overflow by 20–44%. Six other antidepressants and five neuroleptics did not increase the evoked transmitter release. Only trazodone and viloxazine also increased the 3H overflow in experiments in which neuronal 5-HT reuptake was already blocked by 6-nitroquipazine. 5-HT and clonidine inhibited the electrically-induced 3H-5-HT release by stimulation of presynaptic 5-HT autoreceptors and α2-adrenoceptors, respectively; trazodone and viloxazine had no effect on the concentration-response curves of 5-HT and clonidine. Other psychotropic agents with well known antiserotonergic activities also failed to block presynaptic 5-HT autoreceptors. It is concluded that zimelidine, clomipramine, and doxepin enhanced the 3H-5-HT overflow by inhibition of neuronal 5-HT uptake, whereas the increase produced by trazodone and viloxazine cannot be explained by reuptake inhibition or interaction with presynaptic receptors.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 337 (1988), S. 267-272 
    ISSN: 1432-1912
    Keywords: Lithium ; β-Adrenoceptors ; α-Adrenoceptors ; Receptor regulation ; Antidepressants
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Lithium (Li) at a concentration, which exerts prophylactic effects in affective disorders is known to alter noradrenaline turnover and the β-adrenoceptor-dependent cAMP accumulation. In the present study the action of chronic Li administration (at least 5 weeks) on agonist and antagonist binding to adrenoceptors and on the regulation of adrenoceptors was investigated in rat cerebral cortex. Li treatment caused a small but significant decrease in the number of β-adrenoceptor binding sites by 10% (3H-dihydroalprenolol binding) leaving the number of α1- and α2-adrenoceptor binding sites (3H-prazosin and 3H-rauwolscine, respectively) unchanged. The affinity of the radioligands as well as the affinity of agonists to these binding sites were not altered. The up-regulation of β-adrenoceptor binding sites produced by repeated reserpine injections was inhibited by 32% in rats treated concomitantly with Li, although the noradrenaline depleting effect of reserpine was not impaired. In contrast, Li treatment had no effect on the up-regulation of β-adrenoceptor binding induced by 6-OH-dopamine, nor did it alter the β-adrenoceptor down-regulation following chronic administration of desipramine. The up-regulation of α1-adrenoceptor binding sites caused by reserpine or 6-OH-dopamine also remained unaffected by Li. It is concluded that chronic Li has limited effects on cortical adrenoceptors and their regulation. The inhibition of β-adrenoceptor up-regulation caused by reserpine may reflect an action of Li on non-adrenergic systems rather than a general “stabilizing” effect on adrenoceptors proposed previously.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...