Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2242
    Keywords: Brassica napus ; Cruciferin ; Antisense ; Seed storage protein ; Amino-acid composition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The levels of certain essential amino acids, in particular cysteine, lysine and methionine, in the seed storage protein of a commercial spring variety of rape, Brassica napus, have been increased by the introduction of an antisense gene for cruciferin, which is the most abundant storage protein in rapeseed. The antisense construct contained part of the cruA gene in an inverted orientation, and the gene was driven by the 5′ flanking region of the gene for napin such that antisense RNA was expressed in a seed-specific manner. The construct was introduced by Agrobacterium-mediated gene transfer. In self-pollinated seeds (T1 seeds) of transgenic plants there was a reduction in the levels of the α1β1 and α2/3β2/3 subunits of cruciferin, whereas the level of the α4β4 subunit was unchanged. The total protein and lipid contents of transgenic seeds did not differ significantly from that of normal seeds. Seeds with reduced amounts of cruciferin accumulated higher amounts of napin than non-transformed seeds, but the level of oleosin was unaffected. Amino-acid analysis of the seed storage protein revealed that T1 seeds with reduced amounts of cruciferin contained higher relative levels of three essential amino acids, namely, lysine, methionine and cysteine, with increases of 10%, 8% and 32% over the respective levels in non-transgenic seeds (B. napus cv Westar).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 101 (1987), S. 15-20 
    ISSN: 1573-5036
    Keywords: Athyrium yokoscense ; cell wall ; cytoplasm ; exchange capacity ; heavy metal tolerance ; metalliferous habitats
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Cells of the roots ofA. yokoscense growing on metalliferous habitats were fractionated into their cell wall and cytoplasmic components. About 70–90% of the total copper, zinc and cadmium was located in the cell wall. Copper had a markedly greater affinity for the cell wall than zinc and cadmium, and was prevented from entering the cytoplasm. A large proportion of these heavy metals in the cell wall were exchanged as ions. The capacity of the cell wall for exchanging metal ions inA. yokoscense was higher than in other plants growing on metalliferous habitats. However, compared with different ferns unable to grow on metalliferous habitats, this capacity was not unique toA. yokoscense. Consequetly, the root cell wall ofA. yokoscense is considered to be an important site of metal ion storage and may play the role of an excretory organ for heavy metals. On the other hand, as proportion of the heavy metls was transported to the cytoplasm, where the metal content was much higher than the average for normal ferns. This would suggest thatA. yokoscense has another metabolic mechanism related to metal tolerance.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...