Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2048
    Keywords: Antisense inhibition ; Branching enzyme (potato) ; Co-suppression (gene activity) ; Gene activity (branching enzyme) ; Solanum (branching enzyme) ; Starch physico chemical properties
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract One isoform of the branching enzyme (BE; EC 2.4.1.18) of potato (Solarium tuberosum L.) is known and catalyses the formation of α-1,6 bonds in a glucan chain, resulting in the branched starch component amylopectin. Constructs containing the antisense or sense-orientated distal 1.5-kb part of a cDNA for potato BE were used to transform the amylose-free (amf) mutant of potato, the starch of which stains red with iodine. The expression of the endogenous BE gene was inhibited either largely or fully as judged by the decrease or absence of the BE mRNA and protein. This resulted in a low percentage of starch granules with a small blue core and large red outer layer. There was no effect on the amylose content, degree of branching or λmax of the iodine-stained starch. However, when the physico-chemical properties of the different starch suspensions were assessed, differences were observed, which although small indicated that starch in the transformants was different from that of theamf mutant.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1617-4623
    Keywords: Amylose content ; Antisense RNA ; Dominant (hemizygous) suppression ; Granule-bound starch synthase ; Transgenic potato
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Granule-bound starch synthase [GBSS; EC 24.1.21] determines the presence of amylose in reserve starches. Potato plants were transformed to produce antisense RNA from a gene construct containing a full-length granule-bound starch synthase cDNA in reverse orientation, fused between the cauliflower mosaic virus 35S promoter and the nopaline synthase terminator. The construct was integrated into the potato genome by Agrobacterium rhizogenes-mediated transformation. Inhibition of GBSS activity in potato tuber starch was found to vary from 70% to 100%. In those cases where total suppression of GBSS activity was found both GBSS protein and amylose were absent, giving rise to tubers containing amylose-free starch. The variable response of the transformed plants indicates that position effects on the integrated sequences might be important. The results clearly demonstrate that in tubers of potato plants which constitutively synthesize antisense RNA the starch composition is altered.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...