Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of chemical ecology 13 (1987), S. 583-591 
    ISSN: 1573-1561
    Keywords: Honeybee ; Apis mellifera ; Hymenoptera ; Apidae ; feces ; queen pheromone ; queen acceptance ; repellent
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract When placed in a small observation arena with workers, most young virgin honeybee queens released fecal (hindgut) material during agonistic interactions with workers and with each other. On release of this material, workers moved to the sides of the arena and groomed themselves. Bioassays of virgin queen fecal material demonstrated that it contains pheromone that repels workers and stimulates grooming behavior. Pheromone was present only in the feces of virgin queens that were more than 24 hr old and less than 2 weeks old. Feces of 2- to 4-day-old workers and virgin queens more than 2 weeks old did not elicit an avoidance response by workers. Moreover, the feces of young virgin queens had a strong fragrance, while that of older queens had a rancid odor and that of young workers had no detectable odor.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-1561
    Keywords: Honeybee ; Apis mellifera ; Hymenoptera ; Apidae ; hydrocarbons ; kin recognition ; genetic relatedness
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Hydrocarbons of worker honeybees of known pedigree were extracted and analyzed using gas chromatography and mass spectrometry. Variability in hydrocarbon extracts of individual workers is determined at least in part genetically. Correlations in hydrocarbon composition of extracts were highest among more closely related individuals. Individuals maintained in groups exchange hydrocarbons but still maintain enough self-produced compounds to retain genetically determined individual characteristics. These results demonstrate that extractable hydrocarbons of bees provide sufficiently reliable genetic information to function as labels for use during kin recognition.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Behavioral ecology and sociobiology 35 (1994), S. 99-107 
    ISSN: 1432-0762
    Keywords: Key words Apis mellifera ; Genetics ; Drone production ; Allozymes ; Reproductive conflict
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Previously we reported that there are subfamily differences in drone production in queenless honey bee colonies, but these biases are not always explained by subfamily differences in oviposition behavior. Here we determine whether these puzzling results are best explained by either inadequate sampling of the laying worker population or reproductive conflict among workers resulting in differential treatment of eggs and larvae. Using colonies composed of workers from electrophoretically distinct subfamilies, we collected samples of adult bees engaged in the following behavior: “true” egg laying, “false” egg laying, indeterminate egg laying, egg cannibalism, or nursing (contact with larvae). We also collected samples of drone brood at four different ages: 0 to 2.5-h-old eggs, 0 to 24-h-old eggs, 3 to 8-day-old larvae, and 9 to 14-day-old larvae and pupae. Allozyme analyses revealed significant subfamily differences in the likelihood of exhibiting egg laying, egg cannibalism, and nursing behavior, as well as significant subfamily differences in drone production. There were no subfamily differences among the different types of laying workers collected from each colony, suggesting that discrepancies between subfamily biases in egg-laying behavior and drone production are not due to inadequate sampling of the laying worker population. Subfamily biases in drone brood production within a colony changed significantly with brood age. Laying workers had significantly more developed ovaries than either egg cannibals or nurses, establishing a physiological correlate for the observed behavioral genetic differences. These results suggest there is reproductive conflict among subfamilies and individuals within queenless colonies of honey bees. The implications of these results for the evolution of reproductive conflict, in both queenright and queenless contexts, are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Behavioral ecology and sociobiology 35 (1994), S. 99-107 
    ISSN: 1432-0762
    Keywords: Apis mellifera ; Genetics ; Drone production ; Allozymes ; Reproductive conflict
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Previously we reported that there are subfamily differences in drone production in queenless honey bee colonies, but these biases are not always explained by subfamily differences in oviposition behavior. Here we determine whether these puzzling results are best explained by either inadequate sampling of the laying worker population or reproductive conflict among workers resulting in differential treatment of eggs and larvae. Using colonies composed of workers from electrophoretically distinct subfamilies, we collected samples of adult bees engaged in the following behavior: “true” egg laying, “false” egg laying, indeterminate egg laying, egg cannibalism, or nursing (contact with larvae). We also collected samples of drone brood at four different ages: 0 to 2.5-h-old eggs, 0 to 24-h-old eggs, 3 to 8-day-old larvae, and 9 to 14-day-old larvae and pupae. Allozyme analyses revealed significant subfamily differences in the likelihood of exhibiting egg laying, egg cannibalism, and nursing behavior, as well as significant subfamily differences in drone production. There were no subfamily differences among the different types of laying workers collected from each colony, suggesting that discrepancies between subfamily biases in egg-laying behavior and drone production are not due to inadequate sampling of the laying worker population. Subfamily biases in drone brood production within a colony changed significantly with brood age. Laying workers had significantly more developed ovaries than either egg cannibals or nurses, establishing a physiological correlate for the observed behavioral genetic differences. These results suggest there is reproductive conflict among subfamilies and individuals within queenless colonies of honey bees. The implications of these results for the evolution of reproductive conflict, in both queenright and queenless contexts, are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...