Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0843
    Keywords: Key words Head and neck cancer ; Cisplatin ; Glutathione ; Apoptosis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Purpose: To evaluate the correlation between cisplatin sensitivity, intracellular glutathione, and platinum/DNA adduct formation (measured by atomic absorption spectroscopy) in a series of seven head and neck cancer cell lines, and to evaluate the effect of biochemical modulation of glutathione on platinum/DNA adduct formation and repair. Methods: Cisplatin/DNA adducts were measured by atomic absorption spectroscopy. Glutathione content was measured by enzymatic assay and was modulated with buthionine sulfoximine. Apoptosis was measured by double-labeled flow cytometry. Results: Intracellular glutathione concentration was strongly correlated with cisplatin resistance (P = 0.002, R 2=0.7). There was also a statistically significant inverse correlation between cisplatin/DNA adduct formation and the IC50 for cisplatin in these cell lines. (P=0.0004, R 2=0.67). In addition, resistant cells were able to repair approximately 70% of cisplatin/DNA adducts at 24 h, while sensitive cells repaired less than 28% of adducts in the same period. However, despite the positive correlation between cellular glutathione and cisplatin resistance, there was no direct correlation between intracellular glutathione concentration and platinum/DNA adduct formation. Further, depletion of intracellular glutathione by buthionine sulfoximine did not dramatically alter formation of cisplatin/DNA adducts even though it resulted in marked increase in cisplatin cytotoxicity and was associated with increased apoptosis. Conclusions: These results suggest that glutathione has multiple effects not directly related to formation of cisplatin/DNA adducts, but may also be an important determinant of the cell's ability to repair cisplatin-induced DNA damage and resist apoptosis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-7217
    Keywords: stromal epithelial interactions ; insuline-like growth factors ; breast cancer
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The prominent ‘desmoplastic’ or stromal reaction seen in many invasive breast carcinomas lead to early speculation that stromal cells play a role in breast cancer pathogenesis [1]. Experimental evidence now supports this hypothesis and interactions between stromal cells and epithelial cells appear to be important for both normal mammary development and neoplasia. The identification of genes that are selectively expressed in the stroma of malignant breast lesions has recently provided new insights into the molecular basis of stromal-epithelial interactions. Stromally expressed genes include growth factors, proteases and extracellular matrix proteins, all biological activities with potential roles in malignant progression. Investigations discussed here concern the nature of the paracrine signals provided by malignant epithelial cells that activate changes in stromal gene expression, the effect that the stromally derived factors have on the behavior of malignant epithelial cells and the identification of novel factors and receptors in either stroma or epithelia that contribute to their mutual interactions. These questions will be addressed in the context of this laboratory's studies on insulin-like growth factors, as these molecules show marked differences in stromal expression between benign and malignant breast tissue and thus provide a useful paradigm for investigations into the paracrine environment of an evolving breast tumor.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...