Library

Your search history is empty.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Apoptosis  (1)
  • 1
    ISSN: 1432-0738
    Keywords: Key words Acetaminophen ; Hepatotoxicity ; Apoptosis ; bcl-XL expression ; DNA fragmentation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The protein BCL-XL and protein product of proto-oncogene bcl-2 act as apoptosis antagonists, and BCL-XS serve as a dominant death promoter, including apoptosis following exposure to chemotherapeutic drugs. This investigation examined whether some aspects of the highly integrated process of acetaminophen (AAP)-induced hepatotoxicity involve down-regulation or upregulation of expression of BCL-2, BCL-XL and BCL-XS in mouse liver in vivo. Male ICR mice (CD-1; 35–45 g) were treated ip with a hepatotoxic dose of AAP (500 mg/kg) and sacrificed 0, 6, and 18 h later. Blood was collected upon sacrifice for determination of serum alanine aminotransferase (ALT) activity and the liver was sectioned for histopathological diagnosis of necrosis/apoptosis. Portions of liver tissues were also used for DNA extraction (for gel electrophoresis) and Western blot analysis. This study demonstrates that administration of a hepatotoxic dose of AAP to ICR mice results in severe liver injury (ALT leakage 〉200-fold at 6 h and 〉600-fold at 18 h) leading to massive cell death by apoptosis (diagnosed by nuclear ultrastructure, histopathology, and DNA ladder), in addition to necrosis coupled with spectacular changes in the BCL-XL expression (6 and 18 h after AAP administration). Western blot analysis of the liver proteins revealed that mouse liver expresses two proteins, BCL-XL and BCL-XS, and does not express BCL-2. As the toxicity progressed, during 6 and 18 h post-AAP administration, the BCL-XL protein band shifted to a slower mobility band which might represent a phosphorylated form of BCL-XL. Appearance of this higher molecular weight BCL-XL protein band correlated with massive apoptotic death of liver cells along with ladder-like DNA fragmentation. In the same time period, death inhibitory gene bcl-2 remained unexpressed, and the level of expression of BCL-XS remained unaltered. Whether the consistent level of expression of BCL-XS reflected inability of AAP to influence its expression remains unknown. Unaltered expression of BCL-XS in the near total absence of BCL-2 expression raises questions regarding the death promoting role of BCL-XS in vivo. The precise role of modified form of BCL-XL remains elusive. However, this study may have demonstrated for the first time drug-induced changes in the expression of anti-apoptotic gene BCL-XL, and a positive link between AAP-induced apoptotic death and modification of BCL-XL protein in vivo.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...