Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Computational Chemistry and Molecular Modeling  (2)
  • Apospory  (1)
  • 1
    ISSN: 1432-2145
    Keywords: Key words Agamospermy ; Apomixis ; Apospory ; Floral development ; Mutant ; Pennisetum glaucum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Apomixis has never been reported in natural populations of pearl millet [Pennisetum glaucum (L.) R.Br.], although many wild relatives of pearl millet are obligate or facultative aposporous apomicts. Four-nucleate aposporous embryo sacs are formed from somatic cells of the nucellus that do not undergo meiosis. Two mutants of pearl millet, female sterile (fs) and stubby head, have two developmental characteristics in common: a significant reduction in head length compared with the wild-type and the formation of aposporous embryo sacs. Reproductive development in fs and stubby head mutants was examined in depth because of the potential for illuminating basic cellular or developmental factors that may function to alter embryo sac development. Genetic analysis of stubby head showed that this phenotype is conferred by genes at two loci linked in coupling within 29 cM. Crosses between fs and stubby head mutants showed that, despite the similarities in phenotypes, the mutations are at different loci. The mutants differ from wild-type in their inflorescence structure from the time of initiation of spikelet primordia through terminal differentiation of the ovule. Both mutations could be categorized as meristic, since a change in inflorescence branch or organ number was common and gynoecium development varied. We speculate that heterochronic development of the floral meristem and organ initiation/specification programs may be the underlying mechanism for phenotypic changes in these mutants throughout the floral phase.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 9 (1988), S. 171-187 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A method is presented for the rigorous computation of the electric potential of molecules of arbitrary shape, under the assumption of continuous linear dielectric media. The computational technique involves finding the distribution of induced polarization charge on the molecular surface, and proceeds by an application of the method of boundary elements. The surface, which separates the molecular interior (of low dielectric constant) from the highly polar solvent, is given a piece-wise analytic representation as a collection of curvilinear elements. Given a set of internal fixed charges, the distribution of polarization-charge is found as a continuous function over the surface elements, and the electric potential (including all polarization effects) is then easily computed at any point. The method is applied to a spherical interface, and to several small molecules of biological interest, including a hexapeptide. The resulting potentials show good convergence in all cases. The future application of the method to macromolecules is discussed.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 11 (1990), S. 603-622 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A new method is presented for defining a smooth, triangulated analytic surface for biological molecules. The surface produced by the algorithm is well-suited for use with a recently developed polarizationcharge technique1 for the computation of the electrostatic potential of solvated molecules, and may also be used for calculations of molecular surface areas and volumes. The new method employs Connolly's definitions of contact, reentrant and saddle surface,2 but includes modifications that preclude the presence of self-interesting reentrant surface, and also insure a rigorous decomposition of contact regions into curvilinear finite elements. The triangulation algorithm may be used in conjunction with the electrostatic methods described previously to compute the electric potential of molecules of arbitrary shape in solution. Applications include the estimation of hydration enthalpies, computation of the electrostatic forces associated with solvation, estimation of interactions between separate charged species in solution, and computation of the three-dimensional form of the molecular electric potential. Test calculations are presented for a double-stranded dinucleotide, the polypeptide enkephalin, and the protein ferredoxin.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...