Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Thermophile  (2)
  • X-ray structure analysis  (2)
  • Archaebacteria  (1)
  • 1
    ISSN: 1432-072X
    Keywords: Evolution ; Eubacteria ; Thermophile ; Anaerobe ; Thermotoga maritima
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A novel type of bacterium has been isolated from various geothermally heated locales on the sea floor. The organisms are strictly anaerobic, rod-shaped, fermentative, extremely thermophilic and grow between 55 and 90°C with an optimum of around 80°C. Cells show a unique sheath-like structure and monotrichous flagellation. By 16S rRNA sequencing they clearly belong to the eubacteria, although no close relationship to any known group could be detected. The majority of their lipids appear to be unique in structure among the eubacteria. Isolate MSB8 is described as Thermotoga maritima, representing the new genus Thermotoga.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-072X
    Keywords: Eubacterium ; Thermophile ; Evolution ; Fervidobacterium ; Lipids ; Thermotoga
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract An extremely thermophilic anaerobic fermentative eubacterium growing at temperatures between 50 and 80°C (opt.: 65°C) was isolated from an Icelandic hot spring. The cells were Gram-negative motile rods, about 1.8 μm in length, and 0.6 μm in width occurring singly and in pairs. About 50% of the cells formed large spheroids at one end similar to Fervidobacterium nodosum. The new isolate H 21 differed from Fervidobacterium nodosum by a 6 mol % higher GC-content of its DNA (41 mol %), its ability to grow on cellulose, and insignificant DNA homology. The lipids of isolate H 21 were similar to that of members of “Thermotogales”. 16S rRNA sequencing of isolate H 21 and Fervidobacterium nodosum indicated (a) that isolate H 21 represents a new species of the genus Fervidobacterium which we name Fervidobacterium islandicum and (b) that the genus Fervidobacterium belongs to the “Thermotogales” branch.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-072X
    Keywords: Autotroph ; Archaebacteria ; Aquifex ; Hydrogenobacter ; Thermoproteus ; CO2 fixation ; Reductive citric acid cycle
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The autotrophic carbon fixation pathway was studied in the thermophilic hydrogen oxidizing eubacterium Aquifex pyrophilus and in the thermophilic sulfur reducing archaebacterium Thermoproteus neutrophilus. Neither organism contained ribulose-1,5-bisphosphate carboxylase activity suggesting that the Calvin cycle is not operating. Rather, all enzymes of the reductive citric acid cycle were found in A. pyrophilus. In T. neutrophilus ATP citrate lyase activity was detected which has not been achieved so far; this finding corroborates earlier work suggesting the presence of the reductive citric acid cycle in this archaebacterium. The reductive citric acid cycle for autotrophic CO2 fixation now has been documented in the eubacterial branches of the proteobacteria, in green sulfur bacteria, and in the thermophilic Knallgas bacteria as well as in the branch of the sulfur dependent archaebacteria.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Angewandte Chemie International Edition in English 27 (1988), S. 79-88 
    ISSN: 0570-0833
    Keywords: Proteins ; Protein-pigment complexes ; Dyes/Pigments ; Dynamics ; X-ray structure analysis ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Proteins may be rigid or flexible to various degrees as required for optimal function. Flexibility of large parts of a protein, which rearrange or move, is particularly interesting and will be discussed in this article. We differentiate between several categories, although the boundaries between them are diffuse: flexibility of peptide segments, order-disorder transitions of spatially contiguous regions, and domain motions. The domains may be flexibly linked to allow rather unrestricted motions or the motions may be constrained to certain modes. The various categories of large-scale flexibility will be illustrated with the following examples: (1) Small protein proteinase inhibitors are rather rigid molecules which provide binding surfaces complementary to their cognate proteases but show also limited segmental flexibility and adaptation. (2) Large plasma proteinase inhibitors exhibit large conformational changes after interaction with proteases probably for regulatory purposes. (3) Pancreatic serine proteases employ a disorder-order transition of their activation domain as a means to regulate enzymic activity. (4) Immunoglobulins show rather unrestricted and also hinged domain motions in different parts of the molecule probably to allow binding to antigens in different arrangements. (5) Citrate synthase adopts open and closed forms by a hinged domain motion to bind substrates and release products and to perform the catalytic condensation reaction, respectively. (6) Riboflavin synthase, a bifunctional multienzyme complex, catalyzes two consecutive reactions by means of two subunits, α and β. The β-subunits form a shell, in which the α-subunits are enclosed. Diffusional motion of the catalytic intermediates is therefore restricted. In addition, rearrangement of the N-terminal segment occurs during the assembly of the β-subunit. In contrast, rigidity is dominant in the structures of the light-harvesting complexes and the photosynthetic reaction centers involved in photosynthetic light reactions. These are large protein-pigment complexes in which the proteins serve as matrices to hold the pigments in the appropriate conformation and relative arrangement. Since motion would contribute to deactivation of the photoexcited states of the pigments and diminish the efficiency of light-energy and electron transfer, the functional role of rigidity is easy to rationalize for these proteins.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0570-0833
    Keywords: Electron transfer ; Nobel lecture ; X-ray structure analysis ; Light energy transfer ; Protein-cofactor complexes ; Phycobilisomes ; Purple bacterium ; Photosynthesis ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Aspects of intramolecular light energy and electron transfer are discussed for three protein cofactor complexes whose three-dimensional structures have been elucidated by X-ray crystallography: the light harvesting phycobilisomes of cyanobacteria, the reaction center of purple bacteria, and the blue multi-copper oxidases. A wealth of functional data is available for these systems which allows specific correlations to be made between structure and function and general conclusions to be drawn about light energy and electron transfer in biological materials.
    Additional Material: 21 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...