Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1939
    Keywords: Key words Cost of construction ; Life forms ; Nitrogen use efficiency ; Photosynthesis ; Specific leaf area
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effects of biological invasions are most evident in isolated oceanic islands such as the Hawaiian Archipelago, where invasive plant species are rapidly changing the composition and function of plant communities. In this study, we compared the specific leaf area (SLA), leaf tissue construction cost (CC), leaf nutrient concentration, and net CO2 assimilation (A) of 83 populations of 34 native and 30 invasive species spanning elevation and substrate age gradients on Mauna Loa volcano in the island of Hawaii. In this complex environmental matrix, where annual precipitation is higher than 1500 mm, we predicted that invasive species, as a group, will have leaf traits, such as higher SLA and A and lower leaf CC, which may result in more efficient capture of limiting resources (use more resources at a lower carbon cost) than native species. Overall, invasive species had higher SLA and A, and lower CC than native species, consistent with our prediction. SLA and foliar N and P were 22.5%, 30.5%, and 37.5% higher, respectively, in invasive species compared to native ones. Light-saturated photosynthesis was higher for invasive species (9.59 μmol m−2 s−1) than for native species (7.31 μmol m−2 s−1), and the difference was larger when A was expressed on a mass basis. Leaf construction costs, on the other hand, were lower for the invasive species (1.33 equivalents of glucose g−1) than for native species (1.37). This difference was larger when CC was expressed on an area basis. The trends in the above traits were maintained when groups of ecologically equivalent native and invasive species (i.e., sharing similar life history traits and growing in the same habitat) were compared. Foliar N and P were significantly higher in invasive species across all growth forms. Higher N may partially explain the higher A of invasive species. Despite relatively high N, the photosynthetic nitrogen use efficiency of invasive species was 15% higher than that of native species. These results suggest that invasive species may not only use resources more efficiently than native species, but may potentially demonstrate higher growth rates, consistent with their rapid spread in isolated oceanic islands.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1939
    Keywords: Argyroxiphium sandwicense ; Photosynthesis ; Seedlings ; Supercooling ; Temperature acclimation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The capacity of Argyroxiphium sandwicense (silverword) seedlings to acclimate photosynthetic processes to different growing temperatures, as well as the tolerance of A. sandwicense to temperatures ranging from −15 to 60° C, were analyzed in a combination of field and laboratory studies. Altitudinal changes in temperature were also analyzed in order to explain the observed spatial distribution of A. sandwicense. A. sandwicense (Asteraceae) is a giant rosette plant that grows at high elevation on two Hawaiian volcanoes, where nocturnal subzero temperatures frequently occur. In addition, the soil temperatures at midday in the open alpine vegetation can exceed 60° C. In marked contrast to this large diurnal temperature variation, the seasonal variation in temperature is very small due to the tropical maritime location of the Hawaiian archipelago. Diurnal changes of soil and air temperature as well as photosynthetic photon flux density were measured on Haleakala volcano during four months. Seedlings were grown in the laboratory, from seeds collected in ten different A. sandwicense populations on Haleakala volcano, and maintained in growth chambers at 15/5, 25/15, and 30/25° C day/night temperatures. Irreversible tissue damage was determined by measuring electrolyte leakage of leaf samples. For seedlings maintained at each of the three different day/night temperatures, tissue damage occurred at −10° C due to freezing and at about 50° C due to high temperatures. Tissue damage occurred immediately after ice nucleation suggesting that A. sandwicense seedlings tend to avoid ice formation by permanent supercooling. Seedlings maintained at different day/night temperatures had similar maximum photosynthetic rates (5 μmol m−2 s−1) and similar optimum temperatures for photosynthesis (about 16° C). Leaf dark respiration rates compared at identical temperatures, however, were substantially higher for seedlings maintained at low temperatures, but almost perfect homeostasis is observed when compared at their respective growing conditions. The lack of acclimation in terms of frost resistance and tolerance to high temperatures, as well as in terms of the optimum temperature for photosynthesis, may contribute to the restricted altitudinal range of A. sandwicense. The small seasonal temperature variations in the tropical environment where this species grows may have prevented the development of mechanisms for acclimation to longterm temperature changes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1939
    Keywords: Argyroxiphium sandwicense ; Energy balance ; Heat tolerance ; Leaf pubescence ; Silversword
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effects of leaf pubescence and rosette geometry on thermal balance were studied in a subspecies of a Hawaiian giant rosette plant, Argyroxiphium sandwicense. This species, a member of the silversword alliance, grows above 2000 m elevation in the alpine zone of two Hawaiian volcanoes. Its highly pubescent leaves are very reflective (absorptance in the 400–700 nm waveband=0.44). Temperature of the expanded leaves was very similar to, or even lower than, air temperature during clear days, which was somewhat surprising given that solar radiation at the high elevation sites where this species grows can exceed 1100 W m−2. However, the temperature of the apical bud, which is located in the center of the parabolic rosette, was usually 25°C higher than air temperature at midday. Experimental manipulations in the field indicated that incoming solar radiation being focussed towards the center of the rosette resulted in higher temperatures of the apical bud. Attenuation of wind speed inside the rosette, which increased the thickness of the boundary layer surrounding the apical bud, also contributed to higher temperatures. The heating effect on the apical bud of the large parabolic rosette, which apparently enhances the rates of physiological processes in the developing leaves, may exclude the species from lower elevations by producing lethal tissue temperatures. Model simulations of apical bud temperatures at different elevations and laboratory estimates of the temperature threshold for permanent heat injury predicted that the lower altitude limit should be approximately 1900 m, which is reasonably close to the lower limit of distribution of A. sandwicense on Haleakala volcano.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1939
    Keywords: Cold resistance mechanisms ; Supercooling ; Life forms ; High tropical mountains
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Freezing tolerance and avoidance were studied in several different sized species of the tropical high Andes (4200 m) to determine whether there was a relationship between plant height and cold resistance mechanisms. Freezing injury and supercooling capacity were determined in ground level plants (i.e. cushions, small rosettes and a perennial herb), intermediate height plants (shrubs and perennial herbs) and arborescent forms (i.e. giant rosettes and small trees). All ground-level plants showed tolerance as the main mechanism of resistance to cold temperatures. Arborescent forms showed avoidance mechanisms mainly through supercooling, while intermediate plants exhibited both. Insulation mechanisms to avoid low temperatures were present in the two extreme life-forms. We suggest that a combination of freezing tolerance and avoidance by insulation is least expensive and is a more secure mechanism for high tropical mountain plants than supercooling alone.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...