Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2285
    Keywords: Canopy structure ; Quercus coccifera ; Photosynthesis ; Transpiration ; Simulation model
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The structural characteristics of a diverse array of Quercus coccifera canopies were assessed and related to measured and computed light attenuation, proportion of sunlit foliage, foliage temperatures, and photosynthesis and diffusive conductance behavior in different canopy layers. A canopy model incorporating all components of shortwave and longwave radiation, and the energy balance, conductance, and CO2 and H2O exchanges of all leaf layers was developed and compared with measurements of microclimate and gas exchange in canopies in four seasons of the year. In the denser canopies with a leaf area index (LAI) greater than 5, there is little sunlit foliage and the diffuse radiation (400–700 nm) is attenuated to 5% or less of the global radiation (400–700 nm) incident on the top of the canopy. Foliage of this species is nonrandomly distributed with respect to azimuth angle, and within each canopy layer, foliage azimuth and inclination angles are correlated. A detailed version of the model which computed radiation interception and photosynthetic light harvesting according to these nonrandom distributions indicated little difference in whole-canopy gas exchange from calculations of the normal model, which assumes random azimuth orientation. The contributions of different leaf layers to canopy gas exchange are not only a function of the canopy microclimate, but also the degree to which leaves in the lower layers of the canopy exhibit more shade-leaf characteristics, such as low photosynthetic and respiratory capacity and maximal conductance. On cloudless days, the majority of the foliage in a canopy of 5.4 LAI is shaded —70%–90% depending on the time of year. Yet, the shaded foliage under these conditions is calculated to contribute only about one-third of the canopy carbon gain. This contribution is about the same as that of the upper 13% of the canopy foliage. Computed annual whole-canopy carbon gain and water use are, respectively, 60% and 100% greater for a canopy of 5 LAI than for one of 2 LAI. Canopy water-use efficiency is correspondingly less for the canopy of 5 LAI than for that of 2 LAI, but most of this difference is apparent during the cool months of the year, when moisture is more abundant.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 82 (1990), S. 12-17 
    ISSN: 1432-1939
    Keywords: Tussock grass ; Defoliation ; Canopy structure ; Light interception ; Photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The spatial pattern of foliage removal from a tussock grass can influence regrowth through effects on daily carbon gain (CERd). This field study examined the extent to which tussock photosynthetic responses to different defoliation patterns were associated with changes in whole-canopy attributes (e.g., foliage age structure, canopy light microclimate). During the spring growing season, 60% of the green foliage area was removed from individual Agropyron desertorum tussocks with scissors in different spatial patterns. These patterns represented extremes of defoliation patterns that might be inflicted by natural herbivores. Tussock photosynthesis (per unit foliage area) at high light (2000 μmol photons m−2 s−1 between 400 and 700 nm; P2000) increased following clipping with all defoliation patterns. The increases in P2000 were greater when leaves were removed from low in the tussock (older leaves) than if leaves high in the canopy (younger leaves) were removed. These relative changes of P2000 among clipping patterns paralleled the responses of CERd and regrowth from an earlier study. Furthermore, the changes in P2000 corresponded with increases in the proportion of foliage within the tussocks that was directly illuminated at midday. The greater photosynthesis of tussocks after lower-leaf removal was directly related to a higher proportion of younger foliage and a smaller fraction of foliage shaded within the tussock. In a dense canopy, such as these grass tussocks, the influence of defoliation on whole-canopy attributes may be of primary importance to whole-plant photosynthetic responses.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 75 (1988), S. 1-7 
    ISSN: 1432-1939
    Keywords: Agropyron ; Artemisia ; Competition ; Competitive ability ; Water depletion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The relative competitive abilities of Agropyron desertorum and Agropyron spicatum under rangeland conditions were compared using Artemisia tridentata ssp. wyomingensis transplants as indicator plants. We found A. desertorum to have substantially greater competitive ability than A. spicatum as manifested by the responses of Artemisia shrubs that were transplanted into nearly monospecific stands of these grass species. The Artemisia indicator plants had lower survival, growth, reproduction, and late-season water potential in the neighborhoods dominated by A. desertorum than in those dominated by A. spicatum. In similar, essentially monospecific grass stands, neutron probe soil moisture measurements showed that stands of A. desertorum extracted water more rapidly from the soil profile than did those of A. spicatum. These differences in extraction rates correlate clearly with the differences in indicator plant success in the respective grass stands. Nitrogen and phosphorus concentrations in Artemisia tissues suggested these nutrients were not limiting indicator plant growth and survival in the A. desertorum plots.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1939
    Keywords: Roots ; Aridland plants ; Transpiration ; Plant water relations ; Artemisia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Deuterated water absorbed by deep roots of Artemisia tridentata appeared in the stem water of neighboring Agropyron desertorum tussocks. This supports the hypothesis that water absorbed by deep roots in moist soil moves through the roots, is released in the upper soil profile at night, and is stored there until it is resorbed by roots the following day. This phenomenon is termed hydraulic lift. The potential for parasitism of the water stored in the upper soil layers by neighboring plant roots is also shown. The effectiveness of water absorption by deep roots was substantially improved with hydraulic lift as indicated by reductions of 25 to 50% in transpiration on days following experimental circumvention of hydraulic lift. This phenomenon has important implications for plant water relations, mineral nutrient uptake, competitive interactions among neighboring plants and aridland hydrology.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1939
    Keywords: Agropyron ; Artemisia ; Relative growth rate ; Competition ; Tussock grass
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Within the first few weeks after seedling emergence, Agropyron desertorum, a more competitive tussock grass, had a much higher mean relative growth rate (RGR) than Agropyron spicatum, a very similar, but less competitive species. However, beyond the early seedling stage, the two grasses had a remarkably similar whole-plant RGR in hydroponic culture and aboveground RGR in glasshouse soil, if root temperatures were above approximately 12°C. At soil temperatures between 5 and 12°C, A. desertorum exhibited a 66% greater aboveground RGR than A. spicatum (P〈0.05). Both species responded similarly to warming soil temperatures. In the field, however, tiller growth rates were generally similar. Neither species showed marked tiller elongation until a couple of weeks after snowmelt, by which time soil temperatures, at least to a depth of 10 cm, were above 12°C for a significant portion of the day. Aboveground biomass accumulation over a three-year period indicated that both grasses had similar potential growth rates whereas Artemisia tridentata ssp. vaseyana, a common neighbor planted in the same plots, had a much greater potential growth rate. The greater competitive ability of adult A. desertorum, as compared to A. spicatum, cannot be attributed to appreciable differences in potential growth rates.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-1939
    Keywords: Agropyron ; Artemisia ; Belowground competition ; Pseudoroegneria ; Root proliferation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Root proliferation in nutrient-rich soil patches is an important mechanism facilitating nutrient capture by plants. Although the phenomenon of root proliferation is well documented, the specific timing of this proliferation has not been investigated. We studied the timing and degree of root proliferation for three perennial species common to the Great Basin region of North America: a shrub, Artemisia tridentata, a native tussock grass, Agropyron spicatum, and an introduced tussock grass, Agropyron desertorum. One day after we applied nutrient solution to small soil patches, the mean relative growth rate of Agropyron desertorum roots in these soil patches was two to four times greater than for roots of the same plants in soil patches reated with distilled water. Most of the increased root growth came from thin, laterally branching roots within the patches. This rapid and striking root proliferation by Agropyron desertorum occurred in response to N-P-K enrichment as well as to P or N enrichment alone. A less competitive bunchgrass, Agrophyron spicatum, showed no tendency to proliferate roots in enriched soil patches during these two-week experiments. The shrub Artemisia tridentata proliferated roots within one day of initial solution injection in the N-enrichment experiment, but root proliferation of this species was more gradual and less consistent in the N-P-K and P-enrichment experiments, respectively. The ability of Agropyron desertorum to proliferate roots rapidly may partly explain both its general competitive success and its superior ability to exploit soil nutrients compared to Agropyron spicatum in Great Basin rangelands of North America.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...