Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Rheumatology international 13 (1993), S. 5-8 
    ISSN: 1437-160X
    Keywords: Arthritis ; Cytokines ; Chondrocytes ; Growth factors
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Leukaemia inhibitory factor (LIF) is a secretory glycoprotein produced by tumour, mesenchymal and haemopoietic cells. LIF has been found to have pleiotropic actions that include the capacity to regulate cell differentiation, promote acute-phase protein synthesis and stimulate calcium release in bone explants. In view of its similarity to other cytokines that affect cartilage metabolism, the effects of LIF on proteoglycan resorption were examined in pig cartilage explants. Endotoxinfree recombinant mouse LIF was found to produce a dose-dependent increase in sulphated glycosaminoglycan (S-GAG) release (ED50=123 U/ml, approx. 25–50 pM). Statistically significant stimulation was observed with doses of 100 U/ml or greater. When pig cartilage was stimulated with maximum concentrations of LIF and either interleukin 1α (IL-1α), interleukin 1β (IL-1β) or tumour necrosis factor α (TNFα), in each case a significantly greater release of S-GAGs was observed than with the respective cytokines alone (P〈0.05). Comparison of the areas under the curves showed that the action of LIF was additive, and not synergistic with other catabolic cytokines. Dose-response studies showed that transforming growth factor β (TGFβ) produced a partial inhibition of LIF-stimulated release of S-GAGs (ED50=4.5 U/ml). Statistically significant inhibition was observed with doses of 2U/ml or greater. These results showed that LIF stimulated proteoglycan resorption in vitro and that this effect was modulated by other cytokines. Whether LIF contributes to the progressive destruction of cartilage in septic or chronic inflammatory arthritis remains to be determined.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0749-1581
    Keywords: Chemistry ; Analytical Chemistry and Spectroscopy
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Methylmercuration of cytidine-3′-monophosphate is shown to occur at the N-3 site, resulting in a substantial upfield shift in the 15N resonance of this nitrogen. For guanosine-5′-monophosphate the 15N NMR data show N-1 to be the site of complexation of CH3Hg+ at pH 8. The large downfield shift observed for N-1 as a result of this binding is explained in terms of a concomitant deprotonation phenomenon. Changes in 13C NMR chemical shifts on methylmercuration are less pronounced, but consistent with these binding sites.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...