Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0428
    Keywords: Bradykinin ; bradykinin B2 receptor ; glucose uptake ; tyrosine kinase ; insulin receptor ; insulin receptor substrate-1 ; adipocyte ; GLUT4
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary It has been suggested that bradykinin stimulates glucose uptake in experiments in vivo and in cultured cells. However, its mechanism has not yet been fully elucidated. In this study, the effects of bradykinin on the insulin signalling pathway were evaluated in isolated dog adipocytes. The bradykinin receptor binding study revealed that dog adipocytes possessed significant numbers of bradykinin receptors (Kd=83 pmol/l, binding sites = 1.7×104 site/cell). Reverse transcription-polymerase chain reaction amplification showed the mRNA specific for bradykinin B2 receptor in the adipocytes. Bradykinin alone did not increase 2-deoxyglucose uptake in adipocytes; however, in the presence of insulin (10−7 mol/l) it significantly increased 2-deoxyglucose uptake in a dose-dependent manner. Bradykinin also enhanced insulin stimulated GLUT4 translocation from the intracellular fraction to the cell membrane, and insulin induced phosphorylation of the insulin receptor Β subunit and insulin receptor substrate-1 (IRS-1) without affecting the binding affinities or numbers of cell surface insulin receptors in dog adipocytes. The time-course of insulin stimulated phosphorylation of the insulin receptor Β subunit revealed that phosphorylation reached significantly higher levels at 10 min, and stayed at the higher levels until 120 min in the presence of bradykinin, suggesting that bradykinin delayed the dephosphorylation of the insulin receptor. It is concluded that bradykinin could potentiate insulin induced glucose uptake through GLUT4 translocation. This effect could be explained by the potency of bradykinin to upregulate the insulin receptor tyrosine kinase activity which stimulates phosphorylation of IRS-1, followed by GLUT4 translocation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1741-0444
    Keywords: Artificial endocrine pancreas ; Diabetes mellitus ; Fourier transform infrared spectroscopy ; Glucose monitoring ; Noninvasive blood glucose measurement ; Second derivative
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract Whether Fourier transform infra-red spectroscopy with an attenuated total reflection prism could be applied for noninvasive glucose measurement through oral mucosa was evaluated. As a result, the same absorbance peak at 1033 cm−1 as in glucose aqueous solution was found in the absorbance spectra through mucous membrane. However, these glucose specific peaks were interfered with by the baseline drifts owing to prism attachment and the background spectra from body constituents other than glucose. Therefore, to eliminate these interferences, the calibration curve between the second derivatives of the absorbance peak at 1033 cm−1 and those at 2920 cm−1 was calculated (r=0·910). By using this calibration curve, the spectral changes due to prism attachment were first eliminated. Secondly, by obtaining the second derivative of the difference between the postprandial absorbance peak and the fasting sample as a characteristic of an individual, high correlations between the corrected second derivatives of absorbance spectra through the mucous membrane of the lip at 1033 cm−1 and the increases in blood glucose concentrations above fasting levels were observed (r=0·910). In conclusion, it was suggested that Fourier transform infra-red spectroscopy could be useful for noninvasive monitoring of glucose through oral mucosa.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...