Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    ISSN: 1573-4951
    Schlagwort(e): Intermolecular interactions ; Extended Hückel ; Dot surfaces ; Molecular properties ; Reactivity
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Chemie und Pharmazie
    Notizen: Summary A new formalism has been developed in order to evaluate intermolecular interaction energies for inorganic and organometallic complexes in the framework of the extended Hückel method. In order to provide the shortest possible response time on an interactive computer graphics facility, this model should require the minimum amount of computer time, which explains why approximate procedures are used to evaluate electrostatic, charge transfer and exchange repulsion components. When applying this model to typical examples of electrophilic addition reactions to organometallic complexes, it is found that it is essential to take account of charge transfer interactions, the electrostatic component alone being not sufficient, even qualitatively, for a proper description of the reaction mechanism. The results, presented as color-coded dot molecular surfaces, show a very good agreement with experiment as to the site of attack, namely (i) on metal for the electrophilic attack on Fe(cp)2, Fe(CO)5 and X(cp)(CO)2, X=Co, Rh; (ii) on the cp ligand for the nucleophilic attack on Co(cp)2 + and Rh(cp)2 +; (iii) on bz for the nucleophilic attack on Fe(cp)(bz)+. Finally, modellizations of the nucleophilic attack on a coordinated olefin and of the relation between structure and acidic properties of zeolites are presented and discussed.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 52 (1994), S. 867-877 
    ISSN: 0020-7608
    Schlagwort(e): Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie
    Notizen: Coordination compounds are usually symmetrical molecules with degenerate orbitals. Hence, the individual multiplet states arising from open-shell configurations can, in general, not be expressed by a single determinant. We have therefore exploited symmetry to the largest possible extent in order to simplify the relation between the multiplet splitting and single-determinant energies and thus developed a new method based on vector coupling to keep the computational effort to a minimum. A system of computer programs working on both mainframe and personal computers has been developed, carrying out for any desired point group the required group theoretical manipulations. The description of the method is illustrated by considering three practical examples. © 1994 John Wiley & Sons, Inc.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 38 (1990), S. 623-640 
    ISSN: 0020-7608
    Schlagwort(e): Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie
    Notizen: A new formalism has been developed in order to evaluate intermolecular interaction energies for organometallic complexes including electrostatic, polarization, and orbital contributions based on extended Hückel molecular orbital (EHMO) theory. The electrostatic interaction is evaluated using (i) a multipolar expansion of EHMO charge density, or (ii) by calculating directly the electrostatic integrals in the basis of atomic orbitals. The polarization effects are evaluated by introducing a perturbation into the Hamiltonian. The orbital interaction is calculated by considering a supermolecule made of the organometallic substrate and a model electrophile or nucleophile. To provide the shortest possible response time on an interactive computer graphics facility, this model should require the minimum amount of computer time, which explains why approximate procedures are used to evaluate the dominant contributions to the interaction energies. Preliminary results show that these interaction energies lead to reaction potentials in good agreement with experiment for a broad series of nucleophilic and electrophilic addition or substitution reactions involving organometallic complexes. In addition, it is shown that the method can easily be extended for the calculation of solvent effects. To this end, developments considering the supermolecule surrounded by a polarizable continuum are in progress.
    Zusätzliches Material: 9 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...