Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: We start by pointing out relationships between production of information, global simulation, and supercomputing, thus placing our research activities in today's society context. Then we detail the evolution in hardware and software for 1CAP, our experimental supercomputer, which we claim to be especially well suited for supercomputing in science and engineering. A preliminary discussion of 1CAP/3090 (our latest experimental effort) is included. Many examples from different disciplines are provided to verify our assertions. We “prove” our point by presenting an example of global supercomputing. Starting with 3 nuclei and 10 electrons, building up to a single water molecule, then to a few hundred, we learn, for example, about Raman, infrared, and neutron scattering; we then move up to a few hundred thousand molecules to analyze particle flow and obstructions; finally we experiment, but only preliminarily, with a few million particles to learn more on nonequilibrium dynamics as in the Rayleigh-Benard systems. In this way, quantum mechanics is overlapped with statistical mechanics and expanded into microdynamics. The entire paper is finally reanalyzed from a different perspective, presenting rather systematically, even if most briefly, our ideas on “modern” computational chemistry, where quantum mechanics is as much needed as fluid dynamics and graphics. In this section the main computational techniques are analyzed in terms of computer programs and their associated flow diagrams to solve the basic equations using parallel supercomputers.
    Additional Material: 33 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 26 (1984), S. 691-700 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: In this theory a chemical reaction is treated as a quantum transition from reactants to products. The approach leads to a Franck-Condon-like factor for the evaluation of product energy distributions. Second-quantization representation is used to enable a Hamiltonian for reaction to be defined. A specific adiabatic method is used to describe the dynamics of nuclear motion. The theory is applied to the reactions HO + D → OD + H and ClI + D → Cl + ID. Polyatomic photodissociation can also be treated by a similar formalism.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 56 (1995), S. 497-507 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: We present the results of ab initio calculations on the first-, second-, and third-order molecular polarizabilities of urea. An efficacious general finite field perturbation approach, previously applied in the case of paranitroaniline, is extended to the evaluation of axial and nonaxial components of the nonlinear responses. The validity of our numerical procedure is examined at the Hartree-Fock level of theory by comparison with analytical derivative results. The impact of electron correlation is analyzed, by calculating the optical nonlinearities at the Moller-Plesset perturbation theory level. The second-order Moller-Plesset electron correlation correction is shown: (i) to enhance the third-order polarizability y by almost a factor of 2 and (ii) to include the major correlation effects as consideration of the fourth-order correction further improves the y components by less than 20%. We also discuss the frequency-dependence of the nonlinear optical properties of urea by presenting calculations of the dynamic components at the noncorrelated level of theory for different optical processes. © 1995 John Wiley & Sons, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Static polarizability and second hyperpolarizability have been calculated for a number of small molecules—CO2, OCS, CS2, C2H2, C2H6, C3H8, cyclo-C3H6, C3H4, C3H6, SiH4, Si2H6—in the framework of the coupled-perturbed Hartree-Fock (CPHF) theory. The linear and nonlinear coefficients have been calculated with standard Gaussian basis sets and 3-21G bases moderately enlarged with diffuse functions. It is shown that the parallel component of the polarizability saturates rapidly, which suggests that a 3-21G basis containing s and p diffuse functions is sufficient to reproduce αzz. For the αxx and αyy components, a 3-21G basis with s, p, and d diffuse functions is required. In general, the concordance between α computed with this basis set and the experimental static polarizability is at least of the order of 80%. On the contrary, the computation of the second hyperpolarizability with the same basis set for CO2, CS2, and C2H2 gives values that are 30% too low, compared to the experimental value. Better results are observed for ethane, propane, and cyclopropane for which the error is lower than 50%. The better agreement observed for the saturated compounds can probably be explained by their saturated character.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 42 (1992), S. 1327-1338 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A few classical nuclear trajectories at finite temperature have been calculated from ab initio SCF energy gradients. They have been used as an alternative means to search for local minimum energy structures on the Born-Oppenheimer surfaces for some elemental silicon clusters. The approach is found to be beneficial in yielding different structures of silicon clusters. In other cases, the trajectories stay trapped in only one region of the phase space.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...