Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 49 (1994), S. 279-290 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Germanium chemical shifts were studied theoretically by the ab initio molecular orbital method. The compounds studied were GeMe4-xClx and GeMe4-xHx(x = 0-4). The calculated values of the germanium chemical shifts agreed well with the available experimental values. The germanium chemical shift is due to the p-electron mechanism that reflects the ligand electronic effect on the p-p* excitation term in the second-order paramagnetic term. For GeMe4-xHx, the chemical shift is almost linear to the number of the ligand, x. On the other hand, a U-shaped dependence is predicted for the chemical shifts of the GeMe4-xClx series and is shown to be caused by the strong and nonadditive electron-withdrawing ability of the Cl ligand. The diamagnetic contribution is relatively small for the chemical shift and is determined solely by a structural factor. © 1994 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...