Library

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2234
    Keywords: Bond length ; Bond angle ; Atomic partial charges ; Ab initio ; d polarization functions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract We present a series of calculations designed to identify an economical basis set for geometry optimizations and partial charge calculations on medium-size molecules, including neutrals, cations, and anions, with special emphasis on functional groups that are important for biomolecules and drug design. A new combination of valence basis functions and polarization functions, called the MIDI! basis set, is identified as a good compromise of speed and accuracy, yielding excellent geometries and charge balances at a cost that is as affordable as possible for large molecules. The basis set is optimized for molecules containing H, C, N, O, F, P, S, and Cl. Although much smaller than the popular 6-31G* basis set, in direct comparisons it yields more accurate geometries and charges as judged by comparison to MP2/cc-pVDZ calculations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical chemistry accounts 99 (1998), S. 192-196 
    ISSN: 1432-2234
    Keywords: Key words: Basis functions ; Bond angle ; Bond length ; Charges ; partial atomic ; d polarization functions ; Dipole moment ?tpb=-3.5
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract. The MIDI! basis set is extended to three new atoms: silicon, bromine, and iodine. The basis functions for these heteroatoms are developed from the standard 3-21G basis set by adding one Gaussian-type d subshell to each Si, Br, or I atom. The exponents of the d functions are optimized to minimize errors in the geometries and charge distributions that these basis functions yield when they are used in Hartree-Fock calculations with all atoms represented by the MIDI! basis. The MIDI! basis is defined to use five spherical d functions in a d subshell. We present a detailed comparison of such calculations to calculations employing six Cartesian d functions in each d subshell; these studies show that 5D and 6D options give very similar results for molecular geometries and dipole moments, not only for compounds containing Si, Br, and I but also for compounds containing N, O, F, P, S, and Cl. The MIDI! basis set is also tested successfully for hypervalent Si compounds.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of computer aided molecular design 9 (1995), S. 87-110 
    ISSN: 1573-4951
    Keywords: Atomic charges ; Dipole moments ; Electron density ; Electrostatic potential fitting ; Population analysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Summary We propose a new criterion for defining partial charges on atoms in molecules, namely that physical observables calculated from those partial charges should be as accurate as possible. We also propose a method to obtain such charges based on a mapping from approximate electronic wave functions. The method is illustrated by parameterizing two new charge models called AM1-CM1A and PM3-CM1P, based on experimental dipole moments and, respectively, on AM1 and PM3 semiempirical electronic wave functions. These charge models yield rms errors of 0.30 and 0.26 D, respectively, in the dipole moments of a set of 195 neutral molecules consisting of 103 molecules containing H, C, N and O, covering variations of multiple common organic functional groups, 68 fluorides, chlorides, bromides and iodides, 15 compounds containing H, C, Si or S, and 9 compounds containing C-S-O or C-N-O linkages. In addition, partial charges computed with this method agree extremely well with high-level ab initio calculations for both neutral compounds and ions. The CM1 charge models provide a more accurate point charge representation of the dipole moment than provided by most previously available partial charges, and they are far less expensive to compute.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0040-5744
    Keywords: Key words: Bond length ; Bond angle ; Atomic partial charges ; Ab initio ; d polarization functions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract.  We present a series of calculations designed to identify an economical basis set for geometry optimizations and partial charge calculations on medium-size molecules, including neutrals, cations, and anions, with special emphasis on functional groups that are important for biomolecules and drug design. A new combination of valence basis functions and polarization functions, called the MIDI! basis set, is identified as a good compromise of speed and accuracy, yielding excellent geometries and charge balances at a cost that is as affordable as possible for large molecules. The basis set is optimized for molecules containing H, C, N, O, F, P, S, and Cl. Although much smaller than the popular 6-31G* basis set, in direct comparisons it yields more accurate geometries and charges as judged by comparison to MP2/cc-pVDZ calculations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...