Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Neurotransmitter  (2)
  • Auditory brainstem  (1)
  • 1
    ISSN: 1432-0568
    Keywords: Auditory brainstem ; Neurotransmitters ; Immunohistochemistry ; Densitometry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The distribution and colocalization of γ-aminobutyric acid (GABA)- and glycine-like immunoreactivity in the cochlear nuclear complex of the guinea pig have been studied to produce a light microscopic atlas. The method used was based on post-embedding immunocytochemistry in pairs of 0.5-μm-thick plastic sections treated with polyclonal antibodies against conjugated GABA and glycine respectively. Immunoreactive cells, presumably short axon neurones, predominated in the dorsal cochlear nucleus, with mostly single-GABA-labelled cells in the superficial layer, double-labelled in the middle, and single-glycine-labelled in the deep layers. A few large single-glycine-labelled cells, interpreted as commissural neurons, occurred in the ventral nucleus. Scattered double-labelled cells, probably Golgi cells, were seen in the granule cell domain. Immunolabelled puncta of all three staining categories occurred in large numbers throughout the complex, apposed to somata and in the neuropil, showing a differential distribution onto different types of neuron. Three immunolabelled tracts were noted: the tuberculoventral tract, the commissural acoustic stria, and the trapezoidal descending fibres. Most of the fibres in these tracts were single-labelled for glycine, although in the last mentioned tract single-GABA- and double-labelled fibres were also found. Some of the immunolabelled cell types described here are proposed as the origins of the similarly labelled puncta and fibres on the basis of known intrinsic connections.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 79 (1990), S. 547-563 
    ISSN: 1432-1106
    Keywords: Neurotransmitter ; Colocalization ; Vestibular nuclei ; Immunocytochemistry ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The distributions of five amino acids with well-established neuroexcitatory or neuroinhibitory properties were investigated in the feline vestibular complex. Consecutive semithin sections of plastic-embedded tissue were incubated with antisera raised against protein-glutaraldehyde conjugates of GABA, glycine, aspartate, glutamate and taurine. This approach allowed us to study the relative densities of the different immunoreactivities at the level of individual cell profiles. The results indicate that in the vestibular nuclei, neuronal colocalization of two or more neuroactive amino acids is the rule rather than an exception. Colocalization was found of immunoreactivities for GABA and glycine; glycine, aspartate and glutamate; glycine and aspartate, and glutamate and aspartate. GABA immunoreactive neurons were generally small and were found scattered throughout the vestibular complex. Glycine immunoreactive neurons were similarly distributed, except in the superior nucleus where the latter type of neuron could not be detected. Neuronal profiles colocalizing immunoreactivities for GABA and glycine occurred in all nuclei, but were most numerous in the lateral nucleus. The vast majority of the neurons showed noteworthy staining for glutamate and aspartate, although the level of immunoreactivities varied (e.g., the large neurons in the lateral and descending nuclei were more intensely aspartate immunoreactive than the smaller ones). Taurine-like immunoreactivity did not occur in neuronal cell bodies but appeared in Purkinje cell axons and in glial cell profiles. The functional significance of the complex pattern of amino acid colocalization remains to be clarified. In particular it needs to be distinguished between metabolic and transmitter pools of the different amino acids. The present results call for caution when attempts are made to conclude about transmitter identity on the basis of amino acid contents alone.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1106
    Keywords: Neurotransmitter ; Amino acids ; Spinal cord ; Motoneuron ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The distribution of immunoreactivities to six amino acids, possibly related to synaptic function, was investigated in the motor nucleus of the cat L7 spinal cord (laminae VII and IX) using a postembedding peroxidase-antiperoxidase technique. Consecutive 0.5 μm transverse sections of plastic-embedded tissue were incubated with antisera raised against protein-glutaraldehyde conjugates of γ-aminobutyric acid (GABA), glycine, aspartate, glutamate, homocysteate, and taurine. This method allowed localization of the different immunoreactivities in individual cell profiles. The results showed that all these amino acids, except homocysteate, could be clearly detected in either neuronal or glial elements in the ventral horn. In cell bodies of neurons in lamina VII, immunoreactivity was observed for aspartate, glutamate, GABA, and glycine. Adjacent section analysis revealed that combinations of immunoreactivity for glycine/glutamate/aspartate, GABA/glycine/glutamate/aspartate and glutamate/aspartate, respectively, may occur in one and the same cell. In the motor nuclei (lamina IX), immunoreactivity to amino acids was observed in two types of neuron. Large cells, probably representing α-motoneurons, were harboring immunoreactivity to both glutamate and aspartate, while a few small neurons in this area displayed a colocalization of glycine, glutamate, and aspartate. Dendrites and axons in the motor nuclei cocontained glycine/glutamate/aspartate, GABA/glycine/glutamate/aspartate, and glutamate/aspartate immunoreactivities. In both laminae VII and IX, taurine-like immunoreactivity was absent in neuronal cell bodies, but highly concentrated in perivascular cells and small cells with a morphology resembling that of glial cells. A punctate immunolabeling, in all probability representing labeling of nerve terminals, could be demonstrated in the ventral horn for GABA, glycine, and glutamate, but not with certainty for aspartate or taurine. A quantitative estimate of the covering of cell bodies of α-motoneuron size by immunoreactive puncta revealed that glycine immunoreactive terminal-like structures were most abundant (covering 26–42% of the somatic membrane), while glutamate immunoreactive terminals were seen least frequently (5–9% covering). GABA-immunoreactive terminals covered from 10 to 24% of the soma surface. A colocalization of GABA and glycine immunoreactivities in putative nerve terminals could be shown both in the neuropil and in close relation to cell bodies of motoneurons. These results suggest that among the studied amino acids probably only three, namely GABA, glycine, and glutamate, can be considered to be neurotransmitter candidates in the ventral horn of the cat spinal cord.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...