Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The cerebral cortex is an area rich in taurine (2-aminoethanesulphonic acid), but only limited information exists regarding its cellular distribution. We therefore examined taurine-like immunoreactivity in the cerebral cortex of the rat, cat and macaque monkey using antiserum directed against glutaraldehyde-conjugated taurine. Immunostaining was assessed at the light and electron microscopic level, and patterns obtained in light microscopic studies were compared to those produced with antiserum to γ-aminobutyric acid (GABA) and homocysteic acid (HCA). In all three species, strong taurine-like immunoreactive perivascular endothelial cells, pericytes and oligodendrocytes were found. These cells were located throughout the neuropil, which itself showed a low level of immunoreactivity. In rats and cats, a small number of weakly taurine-enriched neurons were observed, particularly in superficial layers. In all cortical areas of the macaque, however, glial staining was matched by strong, selective staining of subpopulations of cortical neurons which were distributed in a bilaminar pattern involving layers II/III and VI. In addition, in primary visual cortex, area 17, immunopositive neurons were also present in sublayer IVCβ, while in the hippocampus strongly taurine-positive neurons were most conspicuous in the granule cell layer of the dentate gyrus. In all regions, strongly taurine-positive neurons constituted only a subpopulation of the neurons occupying a given layer. Examination of adjacent sections for GABA immunoreactivity showed that the most strongly taurine-positive neurons in layers II/III were immunoreactive for GABA. The cells located in layers IVCβ and VI, and the granule cells of the dentate gyrus, however, were GABA-negative. The morphological features of these latter groups suggested that the antiserum to taurine identifies subsets of spiny stellate, small pyramidal and dentate granule cells. None of these neurons showed immunoreactivity with antiserum to HCA in the primate; HCA-positive glia were found along the pial and white matter boundaries of the cortex, and showed no overlap with strongly taurine-positive glial elements. Although a transmitter role for taurine may be unlikely, particularly in view of its enrichment in subpopulations of both inhibitory and excitatory cells, the capacity of taurine to influence membrane-associated functions in excitable tissues, and its selective distribution demonstrated here, provides the potential for a contribution to communication between cortical cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    European journal of neuroscience 5 (1993), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: With a view to identifying the neurotransmitter content of retinal terminals within the mouse suprachiasmatic nucleus, a highly specific antiserum to glutaraldehyde-coupled glutamate was used in a postembedding immunogold procedure at the ultrastructural level. Retinal terminals were identified by cholera toxin–horseradish peroxidase transported anterogradely from the retina and reacted with tetramethyl benzidine/tungstate/H2O2, or by their characteristically pale and distended mitochondria with irregular cristae. Controls included model ultrathin sections containing high concentrations of various amino acids. Alternate serial sections were labelled with anti-glutamate and anti-γ-aminobutyric acid (GABA). Data were analysed by computer-assisted image analysis. Density of glutamate labelling (gold particles per μm2) on whole retinal terminals was 〉 3 times higher than that on postsynaptic dendrites, and 〉 5 times higher than that on miscellaneous non-retinal non-glutamatergic terminals in the suprachiasmatic nucleus. The overall density of gold particles over retinal terminals was ∼ 3 times higher than that over GABAergic terminals, in which glutamate-like immunoreactivity was mainly mitochondrial. Labelling of vesicles in retinal terminals was almost 5 times greater than the apparent labelling of vesicles in GABAergic terminals, underscoring the location of transmitter glutamate within synaptic vesicles in retinal terminals. In the retino-recipient region of the suprachiasmatic nucleus there was also a small population of non-retinal glutamatergic terminals. Their overall immunoreactivity was similar to or exceeded that of retinal terminals, but morphological features clearly distinguished between these two types of glutamate-containing terminals. The present results indicate that the vast majority of retinal terminals may use glutamate as a transmitter, in keeping with electrophysiological and neuropharmacological data from other sources. The possibility of cotransmitters within retinal terminals, suggested by the presence of dense-core vesicles among the glutamate-containing synaptic vesicles, has still to be addressed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    European journal of neuroscience 3 (1991), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The light microscopic localization of aspartate-like immunoreactivity (Asp-LI) was compared to that of glutamate-like immunoreactivity (Glu-LI) in hippocampal slices by means of specific polyclonal antibodies recognizing the amino acids fixed by glutaraldehyde. After incubation in Krebs' solution with normal (5 mM) or depolarizing concentrations of K+, and various additives, the slices were fixed with glutaraldehyde, resectioned and processed according to the peroxidase - antiperoxidase procedure. At 5 mM K+, Glu-LI was localized in nerve-terminal like dots with a conspicuous laminar distribution, the highest Glu-LI concentrations coinciding with the terminal fields of major excitatory pathways thought to use glutamate or aspartate as transmitters. The localization of Asp-LI showed some similarity to that of Glu-LI, but the laminar distribution was less differentiated and the immunoreactivity was much weaker. At 40 and 55 mM K+ the nerve terminal localizations of Glu-LI and Asp-LI were strongly reduced. Concomitantly, both immunoreactivities appeared in astroglial cells. These changes were Ca2+-dependent. The nerve ending staining patterns of Asp-LI and Glu-LI could be sustained during depolarization if the medium was supplemented with glutamine (0.5 mM). Under these conditions Asp-LI became more intense and its distribution approached that of Glu-LI. This suggests that, when stimulated, some nerve endings can increase their reservoir of releasable aspartate. The presence of glutamine during depolarization strongly reduced glial Asp-LI and Glu-LI, possibly due to its providing nitrogen for conversion of glutamate to glutamine. α-Ketoglutarate, another glia-derived precursor of neuronal glutamate, was virtually ineffective in supporting Glu-LI and Asp-LI in nerve endings, and did not suppress Glu-LI or Asp-LI in glia. Our findings provide morphological support for the view that excitatory nerve endings under certain conditions can contain high levels of both aspartate and glutamate (possibly in the same terminals), and that aspartate as well as glutamate can be released synaptically. Further, they underline the importance of the glial supply of the nerve endings with precursor glutamine, which allows them to build up and sustain high concentrations of transmitter amino acids during release.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Two vesicular glutamate transporters, VGLUT1 and VGLUT2, have recently been identified, and it has been reported that they are expressed by largely nonoverlapping populations of glutamatergic neurons in the brain. We have used immunocytochemistry with antibodies against both transporters, together with markers for various populations of spinal neurons, in an attempt to identify glutamatergic interneurons in the dorsal horn of the mid-lumbar spinal cord of the rat. The great majority (94–100%) of nonprimary axonal boutons that contained somatostatin, substance P or neurotensin, as well as 85% of those that contained enkephalin, were VGLUT2-immunoreactive, which suggests that most dorsal horn neurons that synthesize these peptides are glutamatergic. In support of this, we found that most somatostatin- and enkephalin-containing boutons (including somatostatin-immunoreactive boutons that lacked calcitonin gene-related peptide and were therefore probably derived from local interneurons) formed synapses at which AMPA receptors were present.We also investigated VGLUT expression in central terminals of primary afferents. Myelinated afferents were identified with cholera toxin B subunit; most of those in lamina I were VGLUT2-immunoreactive, whereas all those in deeper laminae were VGLUT1-immunoreactive, and some (in laminae III–VI) appeared to contain both transporters. However, peptidergic primary afferents that contained substance P or somatostatin (most of which are unmyelinated), as well as nonpeptidergic C fibres (identified with Bandeiraea simplicifolia isolectin B4) showed low levels of VGLUT2-immunoreactivity, or were not immunoreactive with either VGLUT antibody. As all primary afferents are thought to be glutamatergic, this raises the possibility that unmyelinated afferents, most of which are nociceptors, express a different vesicular glutamate transporter.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of neuroscience 11 (1999), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Brain water transport is poorly understood at the molecular level, and marked changes occur during brain development. As the aquaporin-4 (AQP4) water channel protein is abundant in brain, the expression levels and subcellular distribution of this protein were examined during postnatal development. This study focused on the cerebellum, which showed the same pattern of AQP4 development as the rest of the brain. Semiquantitative immunoblotting revealed very low levels of AQP4 in the first postnatal week. A pronounced increase was noted in the second week, from 2% of adult level at postnatal day 7 (PN7) to 25% at PN14. At PN1 and PN3 immunofluorescence microscopy revealed weak labelling, mainly in radial processes (Bergmann fibres) and at the pial surface. Between PN7 and PN14 the labelling underneath the pia showed a strong increase, and immunoreactivity also appeared around blood vessels throughout the cerebellum. High-resolution immunogold electron microscopy revealed that the subpial and perivascular labelling was restricted to glial end feet, notably to those plasma membrane domains that were apposed to the basal laminae. At no stage was there any evidence of neuronal AQP4 labelling, and AQP1, −2, −3 and −5 proteins were not detected in the neuropil. Riboprobes to AQP4 mRNA produced a particularly strong in situ hybridization signal in glial cells between PN7 and PN14, corresponding to the stage of the most rapid increase of AQP4 protein. The time course and pattern of AQP4 expression suggests that this aquaporin plays an important role in brain water and K+ homeostasis from the second week of development.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The distributions of the mRNAs encoding the l-glutamate transporters GLT1 and GLAST were examined in the rat brain by in situ hybridization using 35S-labelled oligonucleotide probes. Probes directed to GLT1 produced dense labelling in the hippocampus, neocortex and neostriatum, and weak labelling in the cerebellum. In contrast, GLAST mRNA appeared to be greatly enriched in the cerebellum compared to other brain regions. While the intensity of the labelling for GLAST and GLT1 varied among different regions, their cellular distributions appeared to coincide inasmuch as both mRNAs were mainly expressed by glial cells. Labelling occurred, inter alia, in glial cells throughout the hippocampus, and in Golgi epithelial cells in the Purkinje cell layer of the cerebellum.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-0568
    Keywords: Key words Non-autoradiographic in situ hybridization ; Riboprobes ; GAD 65 ; Glia ; Glutamate transporters
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  The distributions in rat cerebral cortex and thalamus of the mRNAs encoding the glutamate transporters GLT1 and rEAAC1 (a rat homologue of rabbit EAAC1) were investigated by nonautoradiographic in situ hybridization using digoxigenin-labelled riboprobes. The probe recognizing rEAAC1 mRNA labelled exclusively neurons while GLT1 mRNA was found in glia as well as in select neuronal populations. The neurons containing the GLT1 transcript exhibited a distribution that was different from, and at some sites complementary to, the distribution of neurons containing rEAAC1 mRNA. In the subiculum, neurons positive for GLT1 and rEAAC1 were found in the deep and superficial part of the cell layer, respectively, while in the parietal neocortex GLT1 predominated in layer VI and rEAAC1 in layer V. Very few neuronal populations, most notably cells in hippocampal subfields CA3 and CA4, and in layer II in the entorhinal cortex, appeared to be equipped with both transcripts. In the thalamus the GLT1 labelling predominated in the midline and intralaminar nuclei while rEAAC1 labelling was found throughout this structure. It was concluded that the cerebral cortex and thalamus show cellular, laminar, as well as regional heterogeneities in the expression of the two glutamate transporters.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-0568
    Keywords: Auditory brainstem ; Neurotransmitters ; Immunohistochemistry ; Densitometry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The distribution and colocalization of γ-aminobutyric acid (GABA)- and glycine-like immunoreactivity in the cochlear nuclear complex of the guinea pig have been studied to produce a light microscopic atlas. The method used was based on post-embedding immunocytochemistry in pairs of 0.5-μm-thick plastic sections treated with polyclonal antibodies against conjugated GABA and glycine respectively. Immunoreactive cells, presumably short axon neurones, predominated in the dorsal cochlear nucleus, with mostly single-GABA-labelled cells in the superficial layer, double-labelled in the middle, and single-glycine-labelled in the deep layers. A few large single-glycine-labelled cells, interpreted as commissural neurons, occurred in the ventral nucleus. Scattered double-labelled cells, probably Golgi cells, were seen in the granule cell domain. Immunolabelled puncta of all three staining categories occurred in large numbers throughout the complex, apposed to somata and in the neuropil, showing a differential distribution onto different types of neuron. Three immunolabelled tracts were noted: the tuberculoventral tract, the commissural acoustic stria, and the trapezoidal descending fibres. Most of the fibres in these tracts were single-labelled for glycine, although in the last mentioned tract single-GABA- and double-labelled fibres were also found. Some of the immunolabelled cell types described here are proposed as the origins of the similarly labelled puncta and fibres on the basis of known intrinsic connections.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-0568
    Keywords: Glutamate ; Neuromuscular junction ; Extensor digitorum longus muscle ; Soleus muscle ; Rats
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Motor nerve terminals and adjacent structures in the extensor digitorum longus and soleus muscles of young adult rats were examined for their content of glutamate by means of quantitative, electron microscopic immunocytochemistry employing colloidal gold particles as markers. The level of glutamate immunoreactivity was stronger in the extensor digitorum longus terminals than in the soleus terminals. In both muscles the glutamate immunolabelling was stronger in the nerve terminals than in the synaptic clefts and the postsynaptic tissue separating the secondary clefts, but the differences were larger in the extensor digitorum longus than in the soleus muscle. The myofibrils of the soleus muscle were more densely labelled than those in the extensor digitorum longus muscle: The level of immunoreactivity was high in the Schwann cells of both muscles. By comparing the labelling intensity of motor nerve terminals with that of muscle fibres and hippocampal mossy fibres (compartments that have been analysed previously with respect to their glutamate content), the mean concentration of fixed glutamate in the extensor digitorum terminals was estimated to be in the range of 10–20 mmol/l. An association of glutamate immunoreactivity with synaptic vesicles was demonstrated in the most strongly labelled terminals. Whether these epitopes were localized in the interior of the vesicles or at their external surface could not be resolved with the present technique. These data indicate that motor nerve terminals contain glutamate, and that the enrichment of this amino acid is more pronounced in the terminals of the extensor digitorum longus muscle (a fast muscle) than in those of the soleus muscle (a slow muscle). A possible modulatory or trophic role of glutamate in the mammalian neuromuscular junction should be considered.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-0568
    Keywords: Key words Immunocytochemistry ; Antioxidants ; Mitochondria ; Pigment epithelial cells ; γ-Glutamylcysteine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Selective antibodies were used to assess the cellular and subcellular localization of glutathione, and the glutathione precursors γ-glutamylcysteine, glutamate, and cysteine, in neuronal (photoreceptors) and non-neuronal (pigment epithelial cells and Müller cells) cell types in the outer retina of the guinea pig. In each cell type the highest level of glutathione immunoreactivity occurred in the mitochondria. The labeling density in the cytoplasmic matrix was higher (and the mitochondrial-cytoplasmic gold particle ratio lower) in pigment epithelial cells than in Müller cells and photoreceptors. The latter two cell types showed a mitochondrial-cytoplasmic gold particle ratio of 15.5 and 21.7, respectively. In contrast to glutathione, γ-glutamylcysteine seemed to be enriched in the cytoplasmic matrix relative to the mitochondria. The immunogold labeling for this dipeptide was stronger in the pigment epithelial cells than in Müller cells and photoreceptors. Glutamate immunoreactivity was high in photoreceptors, intermediate in pigment epithelial cells, and low in Müller cells, while the cysteine immunogold signal was low in each cell type and cell compartment. The present results suggest that glutathione is concentrated in mitochondria but to different degrees in different cells. The low mitochondrial content of γ-glutamylcysteine (the direct precursor of glutathione) is consistent with biochemical data indicating that glutathione is synthesized extramitochondrially and transported into the mitochondrial matrix. Judged from the immunocytochemical data, cysteine may be a rate-limiting factor in glutathione synthesis in each cell type while glutamate can be rate limiting only in Müller cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...