Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Regulatory Peptides 46 (1993), S. 257-259 
    ISSN: 0167-0115
    Keywords: After-potential ; Autonomic nervous system ; Polymerase chain reaction (PCR) ; Substance P ; Sympathetic ganglion ; Tachykinin ; Tachykinin receptor
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0533
    Keywords: Cyanide encephalopathy ; Selective white matter lesion ; Cerebral local blood flow
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary A study was performed to elucidate the significance of various physiological factors contributing to the pathogenesis of experimental cyanide encephalopathy, such as the systemic arterial blood pressure, venous pressure, common carotid blood flow and local blood flow of the cerebral grey and white matters, and blood gas including pH. The histology and topography of the brain damage was also analysed. Twenty-one cats were divided into four groups. The animals in groups 1, 2 and 3 were subjected to continuous infusion of 0.2% sodium cyanide solution and to the ensuing hypotension below 100 mm Hg by administering a ganglion-blocking drug and by respiratory arrest. Severe damage developed in the deep cerebral white matter, corpus callosum, pallidum and substantia nigra, but the damage of the cerebral cortex and hippocampus was not remarkable. The animals in group 4 that were subjected to cyanide infusion without significant hypotension (above 100 mm Hg), but to the same degree of acidosis as that of the the other groups, had similar morphological changes, but to a lesser degree. On the basis of our physiological and morphological findings, we speculated that the pathophysiological factors of tissue hypoxia and subsequent hypotension operated in cyanide leucoencephalopathy. The topographic selectivity seemed to be related to the characteristic cerebral vascular system, and the severity of the white matter lesions was related to the intensity of both hypoxia and hypotension during cyanide infusion, but not to the extent of acidosis, total dose of cyanide or duration of its infusion per se.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2013
    Keywords: Ca2+ channels ; G protein ; Sympathetic ganglion ; Acetylcholine ; Noradrenaline ; Muscarinic receptors ; α-adrenergic receptors
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Effects of acetylcholine (ACh) and noradrenaline (NA) on voltage-gated ion channels of sympathetic neurones acutely dissociated from rat superior cervical ganglion (SCG) were examined using the whole-cell voltage-clamp technique. Depolarizing voltage steps elicited two types of low- and high-voltage-activated (LVA and HVA) Ca2+ currents. Pressure applications of ACh and NA produced concentration-dependent inhibition of the HVA Ca2+ current without affecting the LVA Ca2+ current. The inhibitory action of ACh on the Ca2+ current was blocked by a muscarinic antagonist, atropine. The action of NA was suppressed by an α 2-adrenergic antagonist, yohimbine, but not by an α 1-adrenergic antagonist, prazosin. Delayed rectifying outward K+ currents and inward rectifying K+ current were not affected by either ACh or NA. Tetrodotoxin-sensitive and -insensitive Na+ currents also remained unaffected under actions of ACh and NA. When recorded with electrode containing guanosine-5′-O-(3-thiotriphosphate) (GTP-γ-S), the inhibitory actions of ACh and NA on Ca2+ currents became irreversible. After treatment of SCG neurones with pertussis toxin, the inhibitory action of ACh on the Ca2+ current was almost completely abolished, whereas the action of NA was only partially reduced. The results suggest that ACh and NA differentially inhibit the HVA Ca2+ current via different G proteins coupling muscarinic and α 2-adrenergic receptors to Ca2+ channels in rat SCG neurones.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...