Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Azospirillum brasilense  (2)
  • N2-fixation  (2)
  • Stanford and Smith  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 23 (1996), S. 229-235 
    ISSN: 1432-0789
    Keywords: Key words Denitrification ; N2-fixation ; Fermentation ; N2O/N2 ratio ; C-availability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Nitrate and glucose additions were investigated for their role in the C and N dynamics during anaerobic incubation of soil. A gas-flow soil core method was used, in which the net production of N2, N2O, NO, CO2, and CH4 under a He atmosphere could be monitored both accurately and frequently. In all experiments clayey silt loam soil samples were incubated for 9 days at 25°C. Addition of nitrate (50 mg KNO3-N kg–1 soil) had no effect on total denitrification and CO2 production rates, while the N2O/N2 ratio was affected considerably. The cumulative N2O production exceeded the cumulative N2 production for 6 days in the treatment with nitrate addition, compared to 1.2 days in the unamended treatment. Glucose addition stimulated the microbial activity considerably. The denitrification rates were limited by the growth rate of the denitrifying population. During denitrification no significant differences were observed between the treatments with 700 mg glucose-C kg–1 and 4200 mg glucose-C kg–1, both in combination with 50 mg KNO3-N kg–1. The N2 production rates were remarkably low, until NO3 – exhaustion caused rapid reduction of N2O to N2 at day 2. During the denitrification period 15–18 mg N kg–1 was immobilised in the growing biomass. After NO3 – shortage, a second microbial population, capable of N2-fixation, became increasingly important. This change was clearly reflected in the CO2 production rates. Net volatile fatty acid (VFA) production was monitored during the net N2-fixation period with acetate as the dominant product. N2-fixation faded out, probably due to N2 shortage, followed by increased VFA production. In the high C treatment butyrate became the most important VFA, while in the low C treatment acetate and butyrate were produced at equal rates. During denitrification no VFA accumulation occurred; this does not prove, however, that denitrification and fermentation appeared sequentially. The experiments illustrate clearly the interactions of C-availability, microbial population and nitrate availability as influencing factors on denitrification and fermentation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 23 (1996), S. 229-235 
    ISSN: 1432-0789
    Keywords: Denitrification ; N2-fixation ; Fermentation ; N2O/N2 ratio ; C-availability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Nitrate and glucose additions were investigated for their role in the C and N dynamics during anaerobic incubation of soil. A gas-flow soil core method was used, in which the net production of N2, N2O, NO, CO2, and CH4 under a He atmosphere could be monitored both accurately and frequently. In all experiments clayey silt loam soil samples were incubated for 9 days at 25 °C. Addition of nitrate (50 mg KNO3-N kg-1 soil) had no effect on total denitrification and CO2 production rates, while the N2O/N2 ratio was affected considerably. The cumulative N2O production exceeded the cumulative N2 production for 6 days in the treatment with nitrate addition, compared to 1.2 days in the unamended treatment. Glucose addition stimulated the microbial activity considerably. The denitrification rates were limited by the growth rate of the denitrifying population. During denitrification no significant differences were observed between the treatments with 700 mg glucose-C kg-1 and 4200 mg glucose-C kg-1, both in combination with 50 mg KNO3-N kg-1. The N2 production rates were remarkably low, until NO inf3 sup- exhaustion caused rapid reduction of N2O to N2 at day 2. During the denitrification period 15–18 mg N kg-1 was immobilised in the growing biomass. After NO inf3 sup- shortage, a second microbial population, capable of N2-fixation, became increasingly important. This change was clearly reflected in the CO2 production rates. Net volatile fatty acid (VFA) production was monitored during the net N2-fixation period with acetate as the dominant product. N2-fixation faded out, probably due to N2 shortage, followed by increased VFA production. In the high C treatment butyrate became the most important VFA, while in the low C treatment acetate and butyrate were produced at equal rates. During denitrification no VFA accumulation occurred; this does not prove, however, that denitrification and fermentation appeared sequentially. The experiments illustrate clearly the interactions of C-availability, microbial population and nitrate availability as influencing factors on denitrification and fermentation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0789
    Keywords: Azospirillum brasilense ; Triticum aestivum ; Inoculation ; N and dry matter yield ; N percentages in plant parts ; Associative N2 fixation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Wheat plants (Triticum aestivum) grown in pots and in the field under the Mediterranean climate of the south of France were inoculated with a strain of Azospirillum brasilense. Comparisons with non-inoculated plants grown under the same conditions showed significant responses to inoculation with an increase in the number of fertile tillers, shoot and root dry weight, and root to shoot biomass ratio. The roots of inoculated plants attracted relatively more assimilates than those of the control plants until a late stage of growth (heading stage) but the rhizosphere respiration expressed per unit of root growth was not increased by inoculation. Nitrogen yield, both total and in grains, was also enhanced; however, N percentages of all aerial parts of the plants grown in pots were always statistically lower after inoculation than in the control. At maturity, the N % in seeds was 1.81 and 2.45, respectively. The possible mechanisms of this effect of inoculation under the experimental conditions of this study are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 177 (1995), S. 175-181 
    ISSN: 1573-5036
    Keywords: aerobic incubation ; nitrogen mineralization potential ; Stanford and Smith
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Soil is often incubated under controlled conditions to assess its capacity to mineralize nitrogen and to define the N mineralization potential (No) by fitting a negative exponential curve to N mineralization data. The specificity of No for a given soil and its relevance in N mineralization studies was examined as part of an overall study of the N mineralization process. Soil mixed with an equal amount of sand was aerobically incubated at 35 °C and leached at specific time intervals. Upon leaching, ammonium and nitrate were measured in the extract. It was found that N mineralization data did not always follow first-order kinetics making it difficult to calculate No. The computed No value was influenced by the shape of the curve, the duration of the incubation experiment and was reciprocally related to the N mineralization constant (kexp). No did not always give an adequate indication of the amount of N mineralized and was not soil specific as the time of sampling largely affected its size. The usefulness of No in the simulation of the N mineralization process with a kexp value valid for all soils was limited and a kexp value specific for each soil was required. A value combining the soil specific No and kexp values and reflecting the amount of N mineralized over one year was proposed as a suitable alternative to the use of No in comparative studies of the N mineralization process. It was concluded that a calculated No could not be used in studies comparing the N mineralization of different soils. In addition, the simulation of the N mineralization required the use of the soil specific kexp and could not be carried out with a kexp valid for all soils.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-5036
    Keywords: aerobic incubation ; C and N mineralization ; crop residues ; soil organic matter pools ; Stanford and Smith
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Fitting a double negative exponential function to N mineralization data can be used to characterize two organic nitrogen pools; an ‘easily’ decomposable (Ndpm) and a ‘resistant’ one (Nrpm). The relevance of those two calculated N mineralization pools was investigated by adding ‘easily’ decomposable organic material to soils. Soil amended with crop residues of sugar-beet or bean was mixed with an equal amount of coarse sand, incubated at 35 °C and leached at specific time-intervals. Upon leaching, NH4 + and NO3 - were measured in the extracts. A double negative exponential function was fitted to the data and two organic N pools were defined. Fitting a double negative exponential function to N mineralization data to characterize an active and resistant organic N pool was sometimes impossible; the N mineralization data did not always resemble a negative exponential function. Additionally, the size of the two pools calculated were not constant with time and were often meaningless; the Nrpm pool was greater than the soil organic N content, the size of the Nrpm pool was smaller than the Ndpm pool or one of the N pools was negative. Relevant values for both Nrpm and Ndpm which were consistent with incubation time were only obtained when excessive amounts of organic material, normally not dealt with in the field, were applied.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 66 (1982), S. 217-223 
    ISSN: 1573-5036
    Keywords: Azospirillum brasilense ; Biofertilizer ; Spring-wheat ; Triticum aestivum ; Winter-wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Three field experiments were conducted on ten cultivars of winterwheat and four cultivars of springwheat to estimate the growth promoting effect ofAzospirillum brasilense under varying nitrogen doses. Independent of cultivar selection or nitrogen dose a highly significant yield increase could be observed in winterwheat: strains S631 and SpBr14 increased the average grain yield with 9.14% and 14.82% respectively. When the yield components were studied a coinciding increase in ear density could be demonstrated of resp. 10.57% and 13.55%. Less significant results were obtained with springwheat although in one experiment strain SpBr14 significantly increased grain yield. As with winterwheat tillering of the plant was markedly affected by inoculation with both strains. In a companion greenhouse experiment it was found that inoculation with Azospirillum can cause a decrease in the root mass of wheatplants except when strain SpBr14 is used. Therefore it is suggested that the presence of a higher tillering together with an undisturbed nutrient uptake capacity can result in yield increases after inoculation withAzospirillum brasilense.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...