Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1912
    Keywords: BIMT 17 ; 5-HT1A receptors ; 5-HT2A receptors ; Extracellular recording
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract BIMT 17 (1-[2-[4-(3-trifluoromethyl phenyl) piperazin-1-yl] ethyl] benzimidazol- [1H]-2-one), a 5-HT1A receptor agonist/5-HT2A receptor antagonist (see Borsini et al., accompanying paper), in a dose range of 1–10 mg/kg i.v., dose-dependently inhibited the electrical activity of rat medial prefronto-cortical neurons, whereas buspirone, in a dose range of 0.1–1000 μg/kg, increased it. 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) and 1-[2-(2-thenoylamino)ethyl]-4[1-(7-methoxynaphthyl)] piperazine (S 14671) presented biphasic patterns of response; they increased electrical activity at doses in the range of 0.1–10 μg/kg and 0.1–3 μg/kg i.v. respectively, and reduced it at higher doses, 30–300 μg/kg and 10–30 μg/kg i.v., respectively. The inhibitory effect of BIMT 17 on the firing rate of neurons in the frontal cortex was antagonized by the 5-HT1A antagonists tertatolol and WAY 100135, and was still present after destruction of serotonin (5-HT) containing neuronal endings by the neurotoxin 5,7-dihydroxytryptamine (5,7-DHT; 150 μg/rat, given intraventricularly), which reduced the cortical 5-HT content by 85%. This destruction of 5-HT neurons, while suppressing the ability of 8-OH-DPAT to inhibit the firing rate at high doses, did not change the excitatory action of this compound at low doses. The addition of ritanserin, a 5-HT2A receptor antagonist, potentiated both the excitatory and inhibitory effects of 8-OHDPAT on neuronal electrical activity. Direct microiontophoretic application (100 nA/20 s) of 5-HT and BIMT 17, but not that of 8-OH-DPAT, onto medial prefronto-cortical neurons, decreased the firing rate of these neurons. These findings suggest that BIMT 17 directly inhibits the electrical activity of medial prefronto-cortical neurons through its dual mode of receptor interaction.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 352 (1995), S. 276-282 
    ISSN: 1432-1912
    Keywords: BIMT 17 ; Receptor binding ; 5-HT1A receptor ; 5-HT2A receptor ; Adenylyl cyclase (forskolin-stimulated) ; Pl turnover
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In the search for antidepressant agents with a rapid onset of action, we have found that compound BIMT 17 (1-[2-[4-(3-trifluoromethylphenyl)piperazin1-yl]ethyl]benzimidazol-[1H]-2-one) shows a good affinity for cerebral cortical 5-HT1A (pK i = 7.72) and 5-HT2A (pK i = 6.90) receptors, with no appreciable affinity for the other 5-HT receptor subtypes, including 5-HT2C. BIMT 17 reduced forskolin-stimulated cAMP accumulation in the cerebral cortex (pEC50 = 6.09) and in the hippocampus (pEC50 = 6.50), and antagonized 5-HT-induced phosphatidylinositol turnover (pK i = 6.96) in the cerebral cortex. The effect on cAMP accumulation was blocked by the 5-HT1A receptor antagonist tertatolol. Buspirone, 8-OH-DPAT and S 14671 {1-[2-(2-thenoylamino)ethyl]-4[1-(7-methoxynaphtyl)]piperazine, claimed to be 5-HT1A receptor agonists, did not reduce forskolin-stimulated cAMP formation in the cerebral cortex. On the basis of these data, it was concluded that BIMT 17 was the only compound that behaved as a full agonist with respect to the CAMP response in the cortex, while exerting concurrent agonism at 5-HT1A receptors and antagonism at 5-HT2A receptors. These characteristics might explain the peculiar behaviour of BIMT 17 in mimicking the inhibitory action of 5-HT on the basal firing rate of the cortical neurons (see accompanying paper).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...