Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-072X
    Keywords: Chemolithotrophic nitrification ; Oxygen limitation ; Competition ; Nitrosomonas europaea ; Nitrobacter winogradskyi
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Chemolithotrophic nitrifying bacteria are dependent on the presence of oxygen for the oxidation of ammonium via nitrite to nitrate. The success of nitrification in oxygen-limited environments such as waterlogged soils, will largely depend on the oxygen sequestering abilities of both ammonium- and nitrite-oxidizing bacteria. In this paper the oxygen consumption kinetics of Nitrosomonas europaea and Nitrobacter winogradskyi serotype agilis were determined with cells grown in mixed culture in chemostats at different growth rates and oxygen tensions. Reduction of oxygen tension in the culture repressed the oxidation of nitrite before the oxidation of ammonium was affected and hence nitrite accumulated. K m values found were within the range of 1–15 and 22–166 μM O2 for the ammonium- and nitrite-oxidizing cells, respectively, always with the lowest values for the N. europaea cells. Reduction of the oxygen tension in the culture lowered the half saturation constant K m for oxygen of both species. On the other hand, the maximal oxygen consumption rates were reduced at lower oxygen levels especially at 0 kPa. The specific affinity for oxygen indicated by the V max/K m ratio, was higher for cells of N. europaea than for N. winogradskyi under all conditions studied. Possible consequences of the observed differences in specific affinities for oxygen of ammonium-and nitrite-oxidizing bacteria are discussed with respect to the behaviour of these organisms in oxygen-limited environments.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-072X
    Keywords: Mixotrophic nitrification ; Oxygen consumption kinetics ; Nitrosomonas europaea ; Nitrobacter hamburgensis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Chemolithotrophic ammonium- and nitrite-oxidizing bacteria are dependent on the presence of oxygen for the production of nitrite and nitrate, respectively. In oxygen-limited environments, they have to compete with each other as well as with other organotrophic bacteria for the available oxygen. The outcome of the competition will be determined by their specific affinities for oxygen as well as by their population sizes. The effect of mixotrophic growth by the nitrite-oxidizing Nitrobacter hamburgensis on the competition for limiting amounts of oxygen was studied in mixed continuous culture experiments with the ammonium-oxidizing Nitrosomonas europaea at different levels of oxygen concentrations. The specific affinity for oxygen of N. europaea was in general higher than of N. hamburgensis. In transient state experiments, when oxic conditions were switched to anoxic, N. hamburgensis was washed out and nitrite accumulated. However, grown at low oxygen concentration, the specific affinity for oxygen of N. hamburgensis increased and became as great as that of N. europaea. Due to its larger population size, the nitrite-oxidizing bacterium became the better competitor for oxygen and ammonium accumulated in the fermentor. It is suggested that continuously oxygen-limited environments present a suitable ecological niche for the nitrite-oxidizing N. hamburgensis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 29 (1999), S. 170-177 
    ISSN: 1432-0789
    Keywords: Key words Chitin degradation ; Succession ; Fungi ; Bacteria ; Actinomycetes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  The dynamics of culturable chitin-degrading microorganisms were studied during a 16-week incubation of chitin-amended coastal dune soils that differed in acidity. Soil samples were incubated at normal (5% w/w) and high (15% w/w) moisture levels. More than half of the added chitin was decomposed within 4 weeks of incubation in most soils. This rapid degradation was most likely due to fast-growing chitinolytic fungi (mainly Mortierella spp. and Fusarium spp.) at both moisture levels, as dense hyphal networks of these fungi were observed during the first 4 weeks of incubation. Chitin N mineralization was inhibited by cycloheximide, and fast-growing fungal isolates were capable of rapid chitin decomposition in sterile sand, further suggesting that these fungi play an important role in initial chitin degradation. The strong increase in fast-growing fungi in chitin-amended dune soils was only detected by direct observation. Plate counts and microscopic quantification of stained hyphae failed to reveal such an increase. During the first part of the incubation, numbers of unicellular chitinolytic bacteria also increased, but their contribution to chitin degradation was indicated to be of minor importance. During prolonged incubation, colony forming units (CFU) of chitinolytic streptomycetes and/or slow-growing fungi increased strongly in several soils, especially at the 5% moisture level. Hence, the general trend observed was a succession from fast-growing fungi and unicellular bacteria to actinomycetes and slow-growing fungi. Yet, the composition of chitinolytic CFU over time differed strongly between chitin-amended dune soils, and also between the two moisture levels. These differences could not be attributed to pH, organic matter or initial microbial composition. The possible consequence of such unpredictable variation in microbial community composition for the use of chitin-amendments as a biocontrol measure is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...