Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0568
    Keywords: Key words Kidney ; Urea ; Diluting segment ; Collecting tubule ; Microvasculature ; Lesser spotted dogfish Scyliorhinus caniculus ; Little skate Raja erinacea
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  The renal countercurrent bundles of elasmobranch fish were studied by light and electron microscopy. The kidneys of the lesser spotted dogfish, Scyliorhinus caniculus Blainville, and the little skate, Raja erinacea Mitchill, were investigated. Three-dimensional reconstruction with computer assistance revealed the spatial association of the renal tubular segments and their relationships to each other, as well as to the microvasculature. Regular association between structures was assessed by quantification of contact points on histological sections. The bundles contain a hairpin loop of neck segment and the beginning of the proximal tubule, PIa. The limbs of this loop closely adhere to each other, and a second loop (the early distal tubule) coils around the first loop at the tip of the bundle. The collecting tubule runs between the two loops, and merges with the collecting duct inside the end portion of the bundle. A single lymph capillary-like vessel originates from a few blind-ended rami at the tip of the bundle and runs in close contact with the collecting tubule along the entire bundle. This central vessel merges via several side branches with the venous sinusoid capillaries of the peritubular blood circulation. Thereby the central vessel provides a channel for convective flow of NaCl-rich fluid unidirectionally to the venous portal system of the mesial tissue zone of the kidney. By the close spatial arrangement of the collecting tubule and the central vessel countercurrent exchange of urea from the collecting tubule urine to the fluid in the central vessel is feasible. Thus, the spatial organisation of renal tubular segments and the central vessel is considered to represent the morphological correlate to urea retention by the kidney of Elasmobranchii.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 253 (1988), S. 151-163 
    ISSN: 1432-0878
    Keywords: Renal glomerulus ; Bowman's capsule ; Basement membrane Bowman's capsule ; Munich-Wistar Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The basement membrane of Bowman's capsule (BCBM) of the rat was studied by means of a modified tissue-preservation technique for transmission electron microscopy, which avoids the usual thorough fixation in OsO4 and applies tannic acid and uranyl acetate for staining (Sakai et al. 1986). At most sites the BCBM is multilayered, consisting of one to seven dense layers separated by electron-lucent layers. The latter, which can be termed laminae rarae, contain fine filaments which connect the dense layers to each other and the innermost dense layer to the basal cell membrane of the parietal epithelium. The laminae densae are basically composed of fine filaments arranged in an anastomosing pattern. Individual filaments ranging from 5 to 15 nm in diameter, combine to form filament bundles up to 100 nm in thickness and 1 to 2 μm in length. Within a dense layer, filaments and filamentous bundles are oriented mainly in the same direction. Often the inner dense layers do not form a continuous sheet, and the filamentous bundles are arranged in anastomosing or spiral patterns to form a ribbon-like structure that we call a “microligament”. These microligaments are often embedded in basal furrows of the parietal epithelium and are best developed around the vascular pole. Intracellular actin bundles of the parietal cells are regularly associated with these extracellular ribbon-like structures of the basement membrane. In conclusion, the BCBM has an unusual structure: the laminae densae are characterized by their filamentous nature and are arranged in different patterns, i.e. as a multilayered mat and as microligaments.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...