Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Beat oscillator  (2)
  • Circadian rhythm  (2)
  • Citrate  (1)
  • 1
    ISSN: 1432-2048
    Schlagwort(e): Circadian rhythm ; Crassulacean acid metabolism ; Kalanchoe ; Model simulations ; Phase setting ; Tonoplast
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract Leaves of Kalanchoë daigremontiana Hamet et Perr. at a photon flux density (PFD) above 220 μmol·m−2s−1 (400–700 nm) or at leaf temperatures above 27.0 °C showed a rapid loss of rhythmicity, and a more or less pronounced damping-out of the endogenous circadian rhythm of CO2 exchange under continuous illumination. This rhythm was reinitiated after reduction of the PFD by 90–120 μmol·m−2·s−1 or reduction of leaf temperature by 3.5–11.0 °C under otherwise unchanged external conditions. The reduction in the magnitude of the external control parameter of the Crassulacean acid metabolism (CAM) rhythm (i.e. PFD or leaf temperature) set the phase of the new rhythm. The maxima of CO2 uptake occurred about 5, 28, 51, 75 h after the reduction. Simulations with a CAM model under comparable conditions showed a similar behaviour. The influence of temperature on the endogenous CAM rhythm observed in K. daigremontiana in vivo could be simulated by incorporating into the model temperature-dependent switch modes for passive efflux of malate from the vacuole to the cytoplasm. Thus, the model indicates that tonoplast function plays an important role in regulation of the endogenous CAM rhythm in K. daigremontiana.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    Planta 188 (1992), S. 28-38 
    ISSN: 1432-2048
    Schlagwort(e): Beat oscillator ; Chaos ; Crassulacean acid metabolism ; Endogenous rhythm ; Kalanchoë (CO2 fixation, rhythm) ; Simulation
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract Endogenous free-running regular circadian oscillations of net CO2 exchange in the crassulacean-acidmetabolism (CAM) plantKalanchoë daigremontiana Hamet et Perrier de la Bâthie under constant external conditions in continuous light have been shown to change to irregular non-predictable (chaotic) time behaviour as irradiance or temperature are raised above a critical level. A model of CAM has been constructed with pools of major metabolites of varying concentrations, flows of metabolites leading to exchange between pools, metabolite transformations determined by chemical reactions, and feedback regulations. The model is described by a system of coupled non-linear differential equations. It shows stable rhythmicity in normal dark-light cycles and in continuous light and, like theK. daigremontiana leaves in the experiments, a change to chaos as irradiance is increased. The maintenance of endogenous oscillations in the model is brought about by a hysteresis switch or beat oscillator between two stable oscillation modes. In CAM these stable modes are vacuolar malate accumulation and remobilization. The model shows that the physical nature of the beat oscillator in the leaves can be explained by the balance between active and passive transport at the tonoplast.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    Springer
    Planta 188 (1992), S. 28-38 
    ISSN: 1432-2048
    Schlagwort(e): Beat oscillator ; Chaos ; Crassulacean acid metabolism ; Endogenous rhythm ; Kalanchoë (CO2 fixation, rhythm) ; Simulation
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract Endogenous free-running regular circadian oscillations of net CO2 exchange in the crassulacean-acidmetabolism (CAM) plant Kalanchoë daigremontiana Hamet et Perrier de la Bâthie under constant external conditions in continuous light have been shown to change to irregular non-predictable (chaotic) time behaviour as irradiance or temperature are raised above a critical level. A model of CAM has been constructed with pools of major metabolites of varying concentrations, flows of metabolites leading to exchange between pools, metabolite transformations determined by chemical reactions, and feedback regulations. The model is described by a system of coupled non-linear differential equations. It shows stable rhythmicity in normal dark-light cycles and in continuous light and, like the K. daigremontiana leaves in the experiments, a change to chaos as irradiance is increased. The maintenance of endogenous oscillations in the model is brought about by a hysteresis switch or beat oscillator between two stable oscillation modes. In CAM these stable modes are vacuolar malate accumulation and remobilization. The model shows that the physical nature of the beat oscillator in the leaves can be explained by the balance between active and passive transport at the tonoplast.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    ISSN: 1432-2048
    Schlagwort(e): Crassulacean acid metabolism ; Carboxylate transporter (reconstitution) ; Citrate ; Kalanchoe ; Malate ; Tonoplast
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract When native tonoplast vesicles of Kalanchoë daigremontiana Hamet et Perrier de la Bâthie were energized by an artificial K+ gradient establishing only an inside-positive electrical membrane potential (ΔΨ), it was shown that ΔΨ was sufficient as the sole driving force and that a proton gradient (ΔpH) is not required for malate uptake. Following [14C]malate uptake, K m-malate of the malate transporter was estimated as 2.7–3.0 mM, a value that would allow malate synthesis via phosphoenolpyruvate carboxylase and malate accumulation in vivo in view of the feed-back inhibition of cytosolic phosphoenolpyruvate carboxylase by malate. The maximum reaction velocity (V max) was found to be between 30 and 85 nmol malate·min−1·mg protein −1 , a value that would explain nocturnal malate accumulation in K. daigremontiana even if the transporter were operating below substrate saturation. Citrate (50 mM at pH 7) inhibited transport by 78%. The malate-transport protein of the tonoplast of K. daigremontiana may be a carboxylate uniporter with strong affinities for malate and citrate. From total tonoplast proteins solubilized from native tonoplast vesicles the malate transporter was functionally reconstituted into phospholipid liposomes. The malate transporter was purified and separated from the tonoplast H+-ATPase by hydroxyapatite chromatography, but not from the tonoplast H+-pyrophosphatase. The partially purified malate-transport protein was functionally reconstituted into phospholipid liposomes. In these final proteoliposomes, 0.6% of the protein of the initial tonoplast-vesicle preparation used for solubilization of membrane proteins was recovered. Using the specific rates of malate transport as a reference, i.e. rates of transport related to protein in the preparations, enrichment of the malate transporter in the final proteoliposomes obtained with the reconstitution of the hydroxyapatite eluate was 44-fold compared to the initial native tonoplast vesicles and 2000-fold compared to the liposomes reconstituted from solubilized tonoplast proteins. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of the peptides from the final proteoliposomes, which were functional in malate transport, showed only a few polypeptide bands among which the malate transporter must be found.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    ISSN: 1432-2048
    Schlagwort(e): Key words: Crassulacean acid metabolism ; Circadian rhythm ; Kalanchoë ; Photosynthesis oscillation ; Synchronizer (“zeitgeber”) ; Temperature gradient
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract. The crassulacean acid metabolism (CAM) plant Kalanchoë daigremontiana Hamet et Perrier de la Bâthie shows an endogenous circadian rhythm of net CO2 exchange (J CO2 ) under constant conditions in continuous light. Previous studies have shown, however, that above a certain threshold temperature J CO2 changes from rhythmic to arrhythmic behaviour and that this is reversible when the temperature is lowered again. It is now demonstrated here, that this re-initiation of rhythmic J CO2 from arrhythmicity needs a sufficiently strong temperature signal as defined by its abruptness. Rhythmicity reappears only if the temperature is reduced rather rapidly. If the temperature is reduced slowly then arrhythmicity is retained even at a low temperature level which normally would allow rhythmicity. Under these circumstances, however, a distinct temperature increase followed by an abrupt temperature decrease immediately elicits regular oscillations of J CO2 at this lower temperature. We suggest that the strong temperature signals function as a definite synchronizer (“zeitgeber”) which synchronizes different cells and/or different leaf areas which remain desynchronized after application of only slow temperature changes. This is further supported by Fourier transform analyses, revealing a harmonic structure of the superficially arrhythmic time series of J CO2 after application of slow temperature reductions. This conclusion adds a spatial dimension to the otherwise purely time-dependent rhythmicity and arrhythmicity of J CO2 in CAM.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...