Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-072X
    Keywords: Iron ; Uranium ; Manganese ; Nitrate ; Anaerobic sediments ; Delta proteobacteria ; Aromatics ; Heavy metals
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The gram-negative metal-reducing microorganism, previously known as strain GS-15, was further characterized. This strict anaerobe oxidizes several short-chain fatty acids, alcohols, and monoaromatic compounds with Fe(III) as the sole electron acceptor. Furthermore, acetate is also oxidized with the reduction of Mn (IV), U (VI), and nitrate. In whole cell suspensions, the c-type cytochrome(s) of this organism was oxidized by physiological electron acceptors and also by gold, silver, mercury, and chromate. Menaquinone was recovered in concentrations comparable to those previously found in gram-negative sulfate reducers. Profiles of the phospholipid ester-linked fatty acids indicated that both the anaerobic desaturase and the branched pathways for fatty acid biosynthesis were operative. The organism contained three lipopolysaccharide hydroxy fatty acids which have not been previously reported in microorganisms, but have been observed in anaerobic freshwater sediments. The 16S rRNA sequence indicated that this organism belongs in the delta proteobacteria. Its closest known relative is Desulfuromonas acetoxidans. The name Geobacter metallireducens is proposed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-072X
    Keywords: Thiothrix sp. ; Beggiatoa sp. ; Sulfideoxidizing ; Polyunsaturated ; Fatty acids ; Inclusions ; Sheath ; Southern California ; Ultrastructure ; Sulfur
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Microscopic examination of the whitish mat that covered the substrata around subtidal hydrothermal vents at White Point in southern California revealed a “Thiothrix-like” bacterium containing sulfur inclusions as the dominant filamentous form in this microbial community. The matlike appearance developed as a result of the closely-packed manner inwhich the basal ends of the filaments were anchored to the substrate. The dominant phospholipid fatty acids of these filaments (16:0, 16:1w7c, 18:0, 18:1w7c) were similar to those recovered from a sample of Beggiatoa isolated from a spring in Florida. Filaments from both sources contained small quantities of C18 and C20 polyunsaturated fatty acids, as well. A larger but less abundant sheathless, filamentous form, which also contained sulfur inclusions and displayed a cell wall structure similar to a previously described Thioploca strain, also colonized the substrata around the subtidal mat. The preservation methods used in the preparation of thin-sections of the subtidal mat material were found to be inadequate for defining some key cellular structures of the large filaments. Nevertheless, the results demonstrate that the filamentous bacteria comprising the microbial mat in the vicinity of the subtidal vents exhibit some of the features of the free-living filamentous microorganisms found in deep-water hydrothermal areas.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...