Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 343 (1991), S. 166-172 
    ISSN: 1432-1912
    Keywords: Angiotensin II ; Prejunctional ; Noradrenaline ; Benazeprilat ; α-Adrenoceptors
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The physiological importance of interactions between angiotensin II and sympathetic neurotransmission was studied in an in vivo model with constant flow blood perfused gracilis muscle in situ in dogs pretreated with desipramine and atropine. Sympathetic nerve stimulation- (2 and 8 Hz, 480 pulses) evoked overflow of endogenous noradrenaline and vasoconstriction, and vasoconstrictor responses to exogenous noradrenaline (0.5 nmol, locally i. a.) were evaluated. Angiotensin converting enzyme inhibition by benazeprilat (10 mg i. v.; n = 8) reduced arterial angiotensin II levels from 26 ± 8 to 2 +- 1 pM and reduced mean arterial and basal muscle perfusion pressures. Subsequent resubstitution of angiotensin II (3, 30 and 90 ng kg−1 min−1 i.v.) elevated arterial angiotensin II dose-dependently (to 67 ± 14, 622 ± 63 and 1940 ± 251 pM, respectively), as well as mean arterial and muscle perfusion pressures. Nerve stimulation-evoked noradrenaline overflow was unchanged following benazeprilat (−4 ± 4 and + 1 ± 8% at 2 and 8 Hz, respectively) and during subsequent infusions of angiotensin II. Vasoconstrictor responses to nerve stimulation and exogenous noradrenaline were also uninfluenced by these treatments. Thus, angiotensin II did not enhance sympathetic neurotransmission at the postjunctional level. Another group of animals was pretreated with noncompetitive α-adrenoceptor blockade locally by phenoxybenzamine and benextramine (0.5 mg kg−1 i. a. of each; n = 7), which abolished vasoconstrictor responses to nerve stimulation. The effects of benazeprilat and subsequent angiotensin II infusions (3 and 30 ng kg−1 min−1 i.v.) on circulating angiotensin II levels, mean arterial and muscle perfusion pressures were similar in this group. Following α-adrenoceptor blockade, however, inhibition of angiotensin converting enzyme reduced sympathetic nerve stimulation-evoked noradrenaline overflow by 23 ± 4 and 21 ± 5% at 2 and 8 Hz, respectively (P 〈 0.01 for both). Angiotensin II infusions failed to enhance evoked noradrenaline overflow (−5 ± 10 and −18 ± 10% at 2 Hz; +6 ± 13% and −3 ± 14% at 8 Hz) also under these conditions. It is concluded that circulating angiotensin II does not influence sympathetic vascular control in canine skeletal muscle even at very high levels in arterial plasma. Angiotensin converting enzyme inhibition reduces nerve stimulation-evoked noradrenaline overflow only in the presence of α-adrenoceptor blockade, suggesting that prejunctional α-adrenoceptors have an overriding importance over prejunctional angiotensin II-receptors in the modulation of noradrenaline release in this model. The effect of converting enzyme inhibition may be related to merely local changes in angiotensin II concentration or — unrelated to the renin-angiotensin system — to other consequences of the blockade of this unspecific enzyme.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...