Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of biomolecular NMR 4 (1994), S. 215-230 
    ISSN: 1573-5001
    Keywords: Chemical shift ; Secondary structure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary The contribution of peptide groups to Hα and Hβ proton chemical shifts can be modeled with empirical equations that represent magnetic anisotropy and electrostatic interactions [Ösapay, K. and Case, D.A. (1991) J. Am. Chem. Soc., 113, 9436–9444]. Using these, a model for the ‘random coil’ reference state can be generated by averaging a dipeptide over energetically allowed regions of torsion-angle space. Such calculations support the notion that the empirical constant used in earlier studies arises from neighboring peptide contributions in the reference state, and suggest that special values be used for glycine and proline residues, which differ significantly from other residues in their allowed ϕ,ψ-ranges. New constants for these residues are reported that provide significant improvements in predicted backbone shifts. To illustrate how secondary structure affects backbone chemical shifts we report calculations on oligopeptide models for helices, sheets and turns. In addition to suggesting a physical mechanism for the widely recognized average difference between α and β secondary structures, these models suggest several additional regularities that should be expected: (a) Hα protons at the edges of β-sheets will have a two-residue periodicity; (b) the Hα2 and Hα3 protons of glycine residues will exhibit different shifts, particularly in sheets; (c) Hβ protons will also be sensitive to local secondary structure, but in different directions and to a smaller extent than Hα protons; (d) Hα protons in turns will generally be shifted upfield, except those in position 3 of type I turns. Examples of observed shift patterns in several proteins illustrate the application of these ideas.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 7 (1986), S. 230-252 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: We present an all atom potential energy function for the simulation of proteins and nucleic acids. This work is an extension of the CH united atom function recently presented by S.J. Weiner et al. J. Amer. Chem. Soc., 106, 765 (1984). The parameters of our function are based on calculations on ethane, propane, n-butane, dimethyl ether, methyl ethyl ether, tetrahydrofuran, imidazole, indole, deoxyadenosine, base paired dinucleoside phosphates, adenine, guanine, uracil, cytosine, thymine, insulin, and myoglobin. We have also used these parameters to carry out the first general vibrational analysis of all five nucleic acid bases with a molecular mechanics potential approach.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...