Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Biochemistry  (1)
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 9 (1988), S. 539-553 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Donor-acceptor pairs form EDA complexes that exist as conformational isomers exhibiting different ground-state and photochemical properties. We have sought a rapid, general, and accurate quantum mechanical computational method to generate potential energy surfaces that are representative of the donor-acceptor intermolecular interactions at the self-consistent field (SCF) level. The semiempirical molecular orbital (MO) method MNDO has been compared to ab initio methods to assess its behavior with respect to energy, dipole moment and ionization potential shifts. MNDO correctly distinguishes between repulsive and bound EDA complex states at the SCF level and produces potential curves that are smooth and free of spurious minima or cusps. MNDO curves are systematically more repulsive than those for ab initio STO-3G calculations; calculated interaction energies exhibit a mean absolute deviation of 2.90 kcal/mol. MNDO appears to provide a reliable qualitative estimate of the nondispersion portion of the interaction energy. Limitations and errors arising from minimal basis sets, single determinants, and neglect of dispersion are discussed.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...