Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Biochemistry and Biotechnology  (1)
  • Free energy differences  (1)
  • protein-solvent interactions  (1)
  • 1
    ISSN: 1573-4951
    Keywords: Molecular dynamics ; Free energy differences ; Linear approximation ; DHFR-inhibitor complexes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Summary Derivatives of free energy differences have been calculated by molecular dynamics techniques. The systems under study were ternary complexes of Trimethoprim (TMP) with dihydrofolate reductases of E. coli and chicken liver, containing the cofactor NADPH. Derivatives are taken with respect to modification of TMP, with emphasis on altering the 3-, 4- and 5-substituents of the phenyl ring. A linear approximation allows the encompassing of a whole set of modifications in a single simulation, as opposed to a full perturbation calculation, which requires a separate simulation for each modification. In the case considered here, the proposed technique requires a factor of 1000 less computing effort than a full free energy perturbation calculation. For the linear approximation to yield a significant result, one has to find ways of choosing the perturbation evolution, such that the initial trend mirrors the full calculation. The generation of new atoms requires a careful treatment of the singular terms in the non-bonded interaction. The result can be represented by maps of the changed molecule, which indicate whether complex formation is favoured under movement of partial charges and change in atom polarizabilities. Comparison with experimental measurements of inhibition constants reveals fair agreement in the range of values covered. However, detailed comparison fails to show a significant correlation. Possible reasons for the most pronounced deviations are given.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 27 (1997), S. 395-404 
    ISSN: 0887-3585
    Keywords: hydration ; solvation ; protein-solvent interactions ; molecular dynamics ; computer simulation ; GROMOS ; SPC water ; radial distribution function ; solvent residence times ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The impact of an extensive, uniform and hydrophobic protein surface on the behavior of the surrounding solvent is investigated. In particular, focus is placed on the possible enhancement of the structure of water at the interface, one model for the hydrophobic effect. Solvent residence times and radial distribution functions are analyzed around three types of atomic sites (methyl, polar, and positively charged sites) in 1 ns molecular dynamics simulations of the α-helical polypeptide SP-C in water, in methanol and in chloroform. For comparison, water residence times at positively and negatively charged sites are obtained from a simulation of a highly charged α-helical polypeptide from the protein titin in water. In the simulations the structure of water is not enhanced at the hydrophobic protein surface, but instead is disrupted and devoid of positional correlation beyond the first solvation sphere. Comparing solvents of different polarity, no clear trend toward the most polar solvent being more ordered is found. In addition, comparison of the water residence times at nonpolar, polar, positively charged, or negatively charged sites on the surface of SP-C or titin does not reveal pronounced or definite differences. It is shown, however, that the local environment may considerably affect solvent residence times. The implications of this work for the interpretation of the hydrophobic effect are discussed. Proteins 27:395-404, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...