Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Life and Medical Sciences  (76)
  • Physics  (35)
  • Biochemistry and Biotechnology  (29)
  • Ziegler-Natta catalysis  (6)
  • 1
    Digitale Medien
    Digitale Medien
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 33 (1995), S. 2787-2793 
    ISSN: 0887-624X
    Schlagwort(e): Ziegler-Natta catalysis ; EPDM synthesis ; metallocene catalyst ; Chemistry ; Polymer and Materials Science
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie
    Notizen: 4-Vinylcyclohexene (VCH) and cyclooctadiene (COD) were investigated as termonomers in EPDM (ethylene/propylene/diene) synthesis by using rac-ethylenebis (1-η5-indenyl) zir-conium dichloride (1) as a catalyst precursor. Homopolymerizations of VCH, vinylcycloh-exane and cyclohexene were compared. The parameter Kπκp, which is the apparent rate constant for Ziegler-Natta polymerization, is about the same for VCH and vinylcyclohexanebut is 10 times smaller for cyclohexene. Therefore, the linear olefinic double bond is more active than the cyclic internal double bond. VCH reduces ethylene polymerization rate but not propylene polymerization rate in copolymerizations. In terpolymerizations, VCH tends to suppress ethylene incorporation especially at elevated polymerization temperature and Lowers the polymer MW by about two-fold. COD has very low activity as a termonomer. © 1995 John Wiley & Sons, Inc.
    Zusätzliches Material: 3 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 33 (1995), S. 2795-2801 
    ISSN: 0887-624X
    Schlagwort(e): Ziegler-Natta catalysis ; EPDM synthesis ; metallocene catalyst ; Chemistry ; Polymer and Materials Science
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie
    Notizen: Ethylenebis (η5-fluorenyl) zirconium dichloride (1) and rac-dimethylsilylene bis (1-η5-in-denyl) zirconium dichloride (2) were activated with methylaluminoxane (MAO) to catalyze ethylene (E) propylene (P) copolymerizations. The former produces high MW copolymer at 20°C rich in ethylene with reactivity ratio values of rE = 1.7 and rP 〈0.01, whereas the latter produces lower MW random copolymers with rE = 1.32 and rp = 0.36. Ethylidene norbornene (ENB) complexes with 1/MAO but does not undergo insertion in the presence of E and P. In contrast, 2/MAO catalyzes terpolymerization incorporating 9-15 mol % of ENB with slightly lower MW and activity than the corresponding copolymerizations. In comparison, 1,4-hexadiene was incorporated by 2/MAO with much lower A and MW. Terpolymerizations were also conducted with vinylcyclohexene using both catalyst systems. The steric and electronic effects in these processes were discussed. © 1995 John Wiley & Sons, Inc.
    Zusätzliches Material: 4 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 6 (1989), S. 231-239 
    ISSN: 0887-3585
    Schlagwort(e): phosphotyrosine linkage ; protein-DNA transesterification ; enzyme mechanism ; DNA-protein covalent complex ; Chemistry ; Biochemistry and Biotechnology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Medizin
    Notizen: Tyrosine 319 of E. coli topoisomerase I is shown to be the activesite tyrosine that becomes covalently attached to a DNA 5′ phosphoryl group during the transient breakage of a DNA internucleotide bond by the enzyme. The tyrosine was mapped by trapping the covalent complex between the DNA and DNA topoisomerase I, digesting the complex exhaustively with trypsin, and sequencing the DNA-linked tryptic peptide. Site-directed mutagenesis converting Tyr-319 to a serine or phenylalanine completely inactivates the enzyme. The structure of the enzyme andits catalysis of DNA strand breakage, passage, and rejoining are discussed in terms of the available information.
    Zusätzliches Material: 4 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    ISSN: 0887-3585
    Schlagwort(e): serine protease ; MNDO Hamiltonian ; SCF charges ; energy minimization ; dissociation constant ; inhibitor design ; catalytic mechanism ; Chemistry ; Biochemistry and Biotechnology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Medizin
    Notizen: A step leading to the formation of the covalent complexes between porcine pancreatic elastase (PPE) and 7-[(alkylcarbamoyl)amino]-4-chloro-3-ethoxyisocoumarins (alkylHNCO-EICs) is the formation of the non-covalent Michaelis complex. No average structures are available for the Michaelis complexes of PPE with alkylHNCO-EICs. We present the results of an initial step in obtaining these structures and have determined kinetic constants as well. The kinetic results indicate that formation of the Michaelis complex is what differentiates the effectiveness of these inhibitors in inactivating PPE. The structural and kinetic results together suggest that the structure of the Michaelis complex is necessary for the design of potent alkylHNCO-EIC inhibitors of PPE. Two novel alkylHNCO-EICs are predicted to be the best inhibitors of this series. An alternate mechanism for serine protease inhibition is also proposed. Evidence for, and studies that may add support to, the hypothesized mechanism are discussed. © 1992 Wiley-Liss, Inc.
    Zusätzliches Material: 7 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Digitale Medien
    Digitale Medien
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 32 (1994), S. 2817-2824 
    ISSN: 0887-624X
    Schlagwort(e): metallocenes ; olefin polymerization ; Ziegler-Natta catalysis ; Chemistry ; Polymer and Materials Science
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie
    Notizen: Racemic isopropylidene (1-η5-cyclopentadienyl)(1-η5-indenyl) dichlorozirconium and the 3-methylindenyl derivative have been synthesized and characterized. These precursors activated with methylaluminoxane produce poly(propylene) with hemiisotactic microstructures. © 1994 John Wiley & Sons, Inc.
    Zusätzliches Material: 2 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    ISSN: 0887-624X
    Schlagwort(e): metallocenes ; Ziegler-Natta catalysis ; olefin polymerizations ; Chemistry ; Polymer and Materials Science
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie
    Notizen: {[2-(dimethylamino)ethyl]cyclopentadienyl}titanium trichloride (CpNTiCl3, 1) was activated with methylaluminoxane (MAO) to catalyze polymerizations of ethylene (E), propylene (P), ethylidene norbornene (ENB), vinylcyclohexene (VCH), and 1,4-hexadiene (HD). The dependence of homopolymerization activity (A) of 1/MAO on olefin concentration ([M]n) is n = 2.0 ± 0.5 for E and n = 1.8 ± 0.2 for P. The value of n is 2.4 ± 0.2 for CpTiCl3/MAO catalysis of ethylene polymerization; this system does not polymerize propylene. 1/MAO catalyzes HD polymerization at one-tenth of AH for 1-hexene, probably because of chelation effects in the HD case. The copolymerization of E and P has reactivity ratios of rE = 6.4 and rP = 0.29 at 20°C, and rErP = 1.9, which suggests 1/MAO may be a multisite catalyst. The copolymerization activity of CpTiCl3/MAO is 50 times smaller than that of CpNTiCl3/MAO. Terpolymerization of E/P/ENB has A of 105 g of polymer/(mol of Ti h), incorporates up to 14 mol % (∼ 40 wt %) of ENB, and high MW's of 1 to 3 × 105. All of these parameters are surprisingly insensitive to the ENB concentration. The E/P/VCH terpolymerization has comparable A value of (1.3 ± 0.3) × 105 g/(mol of Ti h). The incorporation of VCH in terpolymer increases with increasing [VCH]. Terpolymerization with HD occurs at about one-third of the A of either ENB or VCH; the product HD-EPDM is low in molecular weight and contains less than 4% of HD. These terpolymerization results are compared with those obtained previously for three zirconocene precursors: rac-ethylenebis(1-η5-indenyl)dichlorozirconium (6), rac-(dimethylsilylene)bis(1-η5-indenyl)dichlorozirconium (7), and ethylenebis(9-η5-fluorenyl)dichlorozirconium (8). The last compound is a particularly poor terpolymerization catalyst; it incorporates very little VCH or HD and no ENB at all. 7/MAO is a better catalyst for E/P/VCH terpolymerization, while 6/MAO is superior in E/P/HD terpolymerization. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 319-328, 1998
    Zusätzliches Material: 3 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Digitale Medien
    Digitale Medien
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 33 (1995), S. 1085-1094 
    ISSN: 0887-624X
    Schlagwort(e): Ziegler-Natta catalysis ; zirconocene catalysts ; molecular modeling ; Chemistry ; Polymer and Materials Science
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie
    Notizen: The syndiospecific propylene polymerizations catalyzed by isopropylidene(cyclopentadienyl)(fluorenyl)- and (2,2-dimethylpropylidene)(cyclopentadienyl)(fluorenyl)-zirconocenium (1+ and 2+) have been investigated theoretically and compared with experimental observations. With the ab initio calculated structures for the transition state (TS) of 1+(M)P and 2+(M)P (M = propylene, P = 2-methylpentyl), their steric energies (E°) have been computed using MM2 force-field. The difference between steric energies E°(m) and E°(r) for the meso and racemic enchainment of propylene, respectively, is defined as the stereocontrol energy [δE°(m - r)] for syndiotactic propagation. The δE°(m - r) for the TS of 1+ (M)P is about 2.1 kcal/mol, the value is 1 kcal/mol greater for 2+(M)P. The observed steric pentad distributions of the syndiotactic poly(propylene) obtained by these catalysts are consistent with smaller effective stereocontrol energy, which is about two-third as large as δE°(m - r) values calculated for the MM2 optimized structure. Syndiotactic enchainment is favored over isotactic enchainment for all combinations of site configurations in the catalyst. α-Agostic interaction seems to enhance syndioselectivity, whereas γ-agostic interaction changes the stereoselectivity to meso enchainment. The mirror plane symmetry of the syndiotactic propagating species renders the stereoselectivity of the polymerization insensitive to reaction conditions. These catalysts are also highly regiospecific. © 1995 John Wiley & Sons, Inc.
    Zusätzliches Material: 2 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    ISSN: 0952-3499
    Schlagwort(e): Chemistry ; Biochemistry and Biotechnology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Medizin
    Notizen: The sequence specific binding of the antibiotic (4S)-(+)-dihydrokikumycin B and its (4R)-(-)enantiomer, [(S)-I and (R)-I, respectively] to DNA were characterized by DNase I and MPE footprinting, calorimetry, UV, spectroscopy, circular dichroism, and 1H NMR studies. Footprinting analyses showed that both enantiomers [(S)-I and (R)-I] bind to AT-rich regions of DNA. 1H NMR studies (ligand induced chemical shift changes and NOE differences) of the dihydrokikumycins with d-[CGCAATTGCG]2 show unambiguously that the N to C termini of the ligands are bound to 5′-A5T6T7-3′ reading from left to right. From quantitative 1D-NOE studies, the AH2(5)-ligand H7 distance of complex A [(S)-I plus decamer (which is bound more strongely)] and complex B[(R)-I and decamer] are estimated to be 3.8 ± 0.3 Å and 4.9 ± 0.4 Å, respectively. This difference in binding properties is reflected in the thermodynamic profiles of the two enantiomeric ligands determined by a combination of spectroscopic and calorimetric techniques. The binding freee energies (ΔG°) of (S)-I and (R)-I to poly d(AT)·poly d(AT) at 25°C are -31.8 and -29.3 kJ mol-1, respectively while the corresponding binding enthalpies (ΔH°) are -11.3 and -0.8 kJ mol-1. These data permit the construction of models for the binding of the enantiomeric dihydrokikumycins to DNA and account for the more efficient binding of the natural (S) isomer to DNA.
    Zusätzliches Material: 12 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 52 (1996), S. 129-140 
    ISSN: 0006-3592
    Schlagwort(e): pathway engineering ; central metabolism ; phosphoenolpyruvate synthase ; phosphoenolpyruvate carboxykinase ; aromatic amino acid ; Escherichia coli ; Chemistry ; Biochemistry and Biotechnology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Werkstoffwissenschaften, Fertigungsverfahren, Fertigung
    Notizen: The rate and yield of producing a metabolite is ultimately limited by the ability to channel metabolic fluxes from central metabolism to the desired biosynthesis pathway. Redirection of central metabolism thus is essential to high-efficiency production of biochemicals. This task begins with pathway analysis, which considers only the stoichiometry of the reaction networks but not the regulatory mechanisms. An approach extended from convex analysis is used to determine the basic reaction modes, which allows the determination of optimal and suboptimal flux distributions, yield, and the dispensable sets of reactions. Genes responsible for reactions in the same dispensable set can be deleted simultaneously. This analysis serves as an initial guideline for pathway engineering. Using this analysis, we successfully constructed an Escherichia coli strain that can channel the metabolic flow from carbohydrate to the aromatic pathway with theoretical yield. This analysis also predicts a novel cycle involving phosphoenolpyruvate (PEP) carboxykinase (Pck) and the glyoxylate shunt, which can substitute the tricarboxylic acid cycle with only slightly less efficiency. However, the full cycle could not be confirmed in vivo, possibly because of the regulatory mechanism not considered in the pathway analysis.In addition to the kinetic regulation, we have obtained evidence suggesting that central metabolites are involved in specific regulons in E. coli. Overexpression of PEP-forming enzymes (phosphoenolpyruvate synthase [Pps] and Pck) stimulates the glucose consumption rate, represses the heat shock response, and negatively regulates the Ntr regulon. These results suggest that some glycolytic intermediates may serve as a signal in the regulation of the phosphotransferase system, heat shock response, and nitrogen regulation. However, the role of central metabolites in these regulations has not been determined conclusively. © 1996 John Wiley & Sons, Inc.
    Zusätzliches Material: 8 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 53 (1997), S. 132-138 
    ISSN: 0006-3592
    Schlagwort(e): metabolic engineering ; metabolic control analysis ; transaldolase ; aromatics ; Chemistry ; Biochemistry and Biotechnology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Werkstoffwissenschaften, Fertigungsverfahren, Fertigung
    Notizen: Aromatic metabolites in Escherichia coli and other microorganisms are derived from two common precursors: phosphoenolpyruvate (PEP) and erythrose 4-phosphate (E4P). During growth on glucose, the levels of both E4P and PEP are insufficient for high throughput of aromatics because of the low carbon flux through the pentose pathway and the use of PEP in the phosphotransferase system. It has been shown that transketolase and PEP synthase are effective in relieving this limitation and promoting high throughput of aromatics. To determine whether transaldolase, another E4P-producing enzyme, is also a limiting factor in directing carbon flux to the aromatic pathway, E. coli transaldolase gene (tal) was cloned and overexpressed in an aroB strain which excretes 3-deoxy-D-arabinoheptulosonate-7-phosphate (DAHP), the first intermediate in the aromatic pathway. We found that overexpression of transaldolase did significantly increase the production of DAHP from glucose. This result further supports the contention that the supply of E4P is limiting when glucose is the carbon source. However, overexpression of transaldolase in strains which already overexpress transketolase did not show a further increase in production of aromatics. This result was attributed to the saturation of E4P supply when TktA was overexpressed. The flux control of DAHP production was discussed on the basis of Metabolic Control Analysis. © 1997 John Wiley & Sons, Inc.
    Zusätzliches Material: 4 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...