Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Biochemistry and Biotechnology  (1)
  • Procainamide  (1)
  • 1
    ISSN: 1432-2013
    Keywords: Skeletal muscle ; Denervation ; Fibrillation ; Myosin isoforms ; Procainamide
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The myofibrillar changes of rat denervated soleus muscle were studied in the presence and in the absence of an antifibrillatory drug. After bilateral sciaticotomy, a concentrated solution of procainamide hydrochloride was steadily released, by way of a miniosmotic pump, in the space between the soleus and the gastrocnemius muscles of one leg. Fibrillation activity of soleus muscles was checked electromyografically at 3- to 5-day intervals. On the 21st day following denervation the muscles were excised, stained for adenosine triphosphatase activity and analysed for myosin heavy chain (MHC) isoforms. In the denervated-procainamidetreated muscles fibrillation was consistently (−75% on average) depressed in comparison to the contralateral denervated muscles. Type 1 (slow) fibres and MHC isoform were also significantly reduced, to the advantage of type 2A (fast) fibres and MHC isoform. The results support the view that denervation inactivity, like other kinds of muscle inactivity, favours the expression of fast type myofibrillar isoforms, and that this effect is counteracted, at least partially, by the spontaneous activity of the denervated muscle.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0263-6484
    Keywords: Myoblast ; proliferation ; integrin ; gene therapy ; antisense ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Myoblasts gene-engineered in vitro and then injected in vivo are safe, efficient options for gene therapy. While isolation of satellite cells is routinely achieved, their proliferation potential in vitro remains a limiting factor for cell transplantation under clinical conditions. We have studied the role of reversible inhibition of gene expression by antisense oligonucleotides on the proliferation of the myogenic cells. Addition of antisense oligonucleotides to myoblast cultures has been used to inhibit specifically the expression of the β1-integrin subunit gene. Here we show that the effects of multiple pulses of a phosphorothioate oligodeoxinucleotide antisense on the attachment to substrata and on the proliferation of myoblasts are dose-dependent. The addition of antisense to rat myoblasts caused rounding up of the cells and most of the cells became detached after several days in culture. A single pulse did not show any consistent effect, while in the presence of continously administered antisense, the relative numbers of myoblasts in the treated muscle culture increased. We have no evidence of inhibition of myoblast fusion under these conditions. On the other hand, [3H]-TdR incorporation, total DNA and total number of cells decreased in antisense-treated cultures thus demonstrating an inhibitory effect of the phosphorothioate oligonucleotides on DNA synthesis. These side-effects could be overcome by substituting the phosphorothioate by unmodified oligonucleotides, so decreasing the half-life of the antisense, but also its toxicity. The overall results suggest a potential role of integrin antisense strategy in modulating the potential of myoblasts to proliferate.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...