Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Cell Biochemistry and Function 10 (1992), S. 79-85 
    ISSN: 0263-6484
    Keywords: Hydrogen peroxide ; human platelets ; 2′-7′-dichlorofluorescein ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The production of hydrogen peroxide was measured by following the oxidation of dichlorofluorescein (DCFH) entrapped into platelets. Resting platelets produced nanomolar quantities of DCF, which was proportional to the concentration of platelets and was steady during 1 h of incubation. A significant increase of basal DCF fluorescence was induced by stimuli namely thrombin, arachidonic acid, the Ca2+ ionophore A23187 and PMA. The effect of agonists has been also measured in the presence of 3-amino-1,2,4-triazole (AT) or N-ethylmaleimide (NEM), inhibitors of catalase and glutathione peroxidase, respectively. A further significant enhancement of DCF produced in stimulated platelets was detected only in the presence of NEM. A correlation was found between the increase in DCF and externally added hydrogen peroxide or the oxidizing species formed by xanthine oxidase plus acetaldehyde. The yield was not affected by superoxide dismutase and was higher in the presence of AT or NEM. A cooperative effect in the presence of both inhibitors was shown. Glutathione peroxidase plus glutathione diminished the level of DCF to basal levels.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Cell Biochemistry and Function 7 (1989), S. 65-70 
    ISSN: 0263-6484
    Keywords: Platelets ; glucose metabolism ; glycolysis ; methylglyoxal ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The incubation of human platelets with methylglyoxal and glucose produces a rapid transformation of the ketoaldehyde to D-lactate by the glyoxalase system and a partial reduction in GSH. Glucose utilization is affected at the level of the glycolytic pathway. No effect of the ketoaldehyde on glycogenolysis and glucose oxidation through the hexose monophosphate shunt was demonstrated. Phosphofructokinase, fructose 1,6 diphosphate (F1, 6DP) aldolase, glyceraldehyde 3-phosphate dehydrogenase and 3-phosphoglycerate mutase were mostly inhibited by methylglyoxal. A decrease in lactate and pyruvate formation and an accumulation of some glycolytic intermediates (fructose 1,6 diphosphate, dihydroxyacetone phosphate, 3-phosphoglycerate) was observed. Moreover methylglyoxal induced a fall in the metabolic ATP concentration. Since methylglyoxal is an intermediate of the glycolytic bypass system from dihydroxyacetone phosphate to D-lactate, it may be assumed that ketoaldehyde exerts a regulating effect on triose metabolism.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Cell Biochemistry and Function 2 (1984), S. 23-25 
    ISSN: 0263-6484
    Keywords: Blood ; fatty acids ; platelet ; membrane ; myeloproliferative disorders ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The fatty acid composition of platelet membranes has been analysed in patients with thrombocytosis due to myeloproliferative disorders, who had not taken any drugs. A significant increase in palmitic and oleic acid, together with a decrease in stearic, linoleic and arachidonic acids was observed. The fatty acid pattern of platelet membranes was also analysed in patients during treatment with ASA (acetylsalicylic acid). ASA ingestion completely normalizes the platelet content of palmitic acid and partially that of stearic and arachidonic acid, whereas it has no effect on the level of linoleic acid and raises that of oleic acid. The altered pattern of fatty acids observed in patients may interfere with platelet function by decreasing membrane fluidity. Treatment of patients with ASA seems to act on platelet membranes by partially normalizing the fatty acid composition.
    Additional Material: 2 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...