Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Palytoxin  (7)
  • Calcium  (5)
  • Botulinum A toxin  (4)
  • Peptides  (3)
  • 11
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 325 (1984), S. 85-87 
    ISSN: 1432-1912
    Keywords: Na+, K+-ATPase ; Palytoxin ; Ouabain ; Kidney ; Erythrocyte
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Hog kidney Na+, K+-ATPase, purified to the microsomal stage and activated with detergent, binds palytoxin, as shown by the nearly complete competition of the toxin with 3H-ouabain. The K i-values of palytoxin, but not of ouabain, depend on the protein concentration; this indicates additional binding sites for the toxin on kidney membranes. — Palytoxin inhibits the enzymatic activity of the detergent-activated preparation nearly completely (IC50 8·10−7 mol/l). Inhibition of ATPase activity and of ouabain binding are promoted by borate, a known activator of palytoxin. — Palytoxin also inhibits the Na+, K+-ATPase of erythrocyte ghosts in the same dose range. The data are discussed in context with the hypothesis (Chhatwal et al. 1983) that palytoxin raises the cellular permeability by altering the state of Na+, K+-ATPase or its environment.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 261 (1968), S. 252-270 
    ISSN: 1432-1912
    Keywords: Peptides ; Bee Venom ; Mast Cells ; Histamine ; Vascular Permeability ; Peptide ; Bienengift ; Mastzellen ; Histamin ; Gefäßpermeabilität
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Description / Table of Contents: Zusammenfassung Bienengift enthält neben dem universell zellschädigenden Melittin und der über Lysolecithinbildung wirksamen Phospholipase A ein drittes mastzelldegranulierendes (MCD-)Peptid. Seine Isolierung gelingt durch Kombination von Gelfiltration an Sephadex G 50 mit Ionenaustauschchromatographie an Carboxymethylcellulose und an Amberlite IRC-50. MCD-Peptid ist stark basisch (Isoelektrischer Punkt um pH 12). Sein minimales Molekulargewicht errechnet sich aus der Aminosäurenanalyse zu 2593. Das Peptid besteht aus 22 Aminosäuren, darunter 4 Halbcystinen. Es liegt in zwei verschiedenen Ladungszuständen vor, die sich bei Papierchromatographie, Papierelektrophorese und Aminosäurenanalyse einheitlich verhalten. MCD-Peptid ist an isolierten Rattenmastzellen (Histaminfreisetzung) und am Mesenterialhäutchen der Ratte (Mastzelldegranulation) etwa wirkungsgleich mit dem synthetischen Histaminliberator Compound 48/80. Melittin wirkt ca. 100- bzw. 10 mal schwächer und zeichnet sich überdies durch eine sehr flache Dosis-Wirkungsbeziehung bei der Histaminfreisetzung aus. Der Rattenblutdruck wird durch MCD-Peptid und Compound 48/80 in quantitativ und qualitativ vergleichbarer Weise gesenkt. Zwischen beiden Substanzen besteht kreuzweise Tachyphylaxie. Die Permeabilität der Hautgefäße der Ratte für zirkulierendes Evans-Blau steigt bei intracutaner Applikation von MCD-Peptid und Compound 48/80. Beide Substanzen sind hier stärker wirksam als Melittin. Die Hautgefäße des Kaninchens sprechen jedoch auf MCD-Peptid schwächer an als auf Melittin und Compound 48/80. Die Ratte reagiert auf i.v. Injektion von 0,5–10 mg/kg MCD-Peptid mit massiver Hyperämie der Acren. Eine kurzdauernde Spastik der Extremitäten weist auf einen zusätzlichen Angriff am motorischen System hin.
    Notes: Summary Bee venom contains three agents which can produce mast cell degranulation. Melittin is a universally acting surfactant; phospholipase A releases the mastocytolytic lysolecithin. A third mast cell degranulating (MCD) peptide has been isolated by gel filtration on Sephadex G 50, followed by chromatography on carboxymethylcellulose, and, finally, on Amberlite IRC-50. MCD-peptide is strongly basic (isoelectric point near pH 12). From the amino acid analysis, a minimum molecular weight of 2593 has been calculated. MCD-peptide consists of 22 amino acids, among them 4 halfcystine residues. It can be obtained in two fractions differing by charge, which appear homogeneous, however, on paper chromatography, paper electrophoresis, and amino acid analysis. When tested on isolated mast cells or on mesentery tissue of rats, MCD-peptide is equiactive with compound 48/80. On the other hand, melittin is 100 times less potent than compound 48/80 on the former tissue and 10 times less potent on the latter; moreover, the dose-response-relation of histamine release is flatter with melittin. MCD-peptide and compound 48/80 depress the blood pressure of rats in a quantitatively and qualitatively similar manner. Crossed tachyphylaxis has been demonstrated. Both substances increase the capillary permeability of rat skin upon intracutaneous injection. Melittin is less active on rat skin vessels. The skin capillaries of rabbits are, however, more sensitive to melittin and compound 48/80 than to MCD-peptide. MCD-peptide (0.5–10 mg/kg i.v.) produces in rats an extreme cyanosis of the acra. A short lasting spasm of the extremities points to an additional effect on the motor system of rats.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 270 (1971), S. 1-9 
    ISSN: 1432-1912
    Keywords: Melittin ; Peptides ; Venoms ; Hemolysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The hexacosapeptide melittin I, which is the main toxin of bee venom, has been synthesized by Lübke and Schröder. In addition, the following derivatives have been prepared which are probably also present in bee venom: melittin II (which differs by one serine), and N1-formylated melittin I and II. In pharmacological tests, the four synthetic peptides were qualitatively indistinguishable from natural melittin as prepared from bee venom. Theyhemolyzed rabbit erythrocytes with a flat dose-response curve. Melittin I exerted 92% of the activity of the natural substance, the three other peptides 90, 61 and 52% respectively.-Theirsurface activity was between 86 and 96% of that of the natural material.-In contrast to our previous reports, no differences were found in onset, degree and duration of the shortlastinghypotensive action in rabbits.-Toxicity (LD 50, mice) was about 4 mg/kg for natural melittin and for the synthetic melittins I and II. The toxicity of formylated melittins was not very different.-The five compounds caused a slow and prolongedcontraction of the guinea-pig ileum which led to tachyphylaxis. Peptide mapping confirmed the identity between the main compound of natural melittin and synthetic melittin I. The peptide pattern of synthetic melittin II is different and is further modified by the presence of the N-formyl group. Our findings leave no doubt as to the identity between the bulk of natural melittin and melittin I. They corroborate the presence in natural melittin of small amounts of N1-formylated melittin I. The pharmacological similarities to synthetic melittin II and N1-formylated melittin II (which have not yet been identified in the venom) argue for a broader structural basis of the melittins as a group.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 14
    ISSN: 1432-1912
    Keywords: Sodium channel ; Calcium ; Cyclic GMP ; Cerebellum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Sea anemone toxin II (ATX II) and MCD-peptide, like other depolarizing agents, raise the content of cGMP and to a lesser extent of cAMP in mouse cerebellar slices. Na+ influx and Ca2+ movement are involved in their mode of action, as indicated by the following observations: 1. The rise of cGMP due to ATX II, MCD-peptide and high potassium was diminished when Na+ had been replaced by Li+. 2. The effects of both toxins and veratridine, but not of high potassium stimulation were prevented by tetrodotoxin (TTX). 3. The cGMP accumulation due to both toxins was abolished in the absence of extracellular Ca2+. 4. The so-called Ca2+-antagonist (−)-D-600 blocked the increase of cGMP due to ATX II, MCD-peptide, veratridine and high potassium. 5. ATX II stimulated the 45Ca2+ uptake in mouse cerebellar slices which was prevented by TTX and (−)-D-600.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 323 (1983), S. 261-268 
    ISSN: 1432-1912
    Keywords: Palytoxin ; Erythrocyte ; Membrane ; Na+, K+-ATPase ; Calcium ; Ouabain
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Palytoxin increases the permeability of human erythrocytes and their resealed ghosts. To elucidate its mode of action the activation by ATP and Ca2+, the inhibition by ouabain, and the changes in permselectivity have been studied: 1. Depletion of cells from ATP considerably depresses their sensitivity towards palytoxin. Ouabain prevents the actions of the toxin, however, with different inhibition characteristics in normal and depleted cells. The concentration of palytoxin required to raise the K+ permeability is higher in ghosts than in erythrocytes. The sensitivity is restored by incorporating ATP which can be partially substituted by ADP and GTP but not by AMP, Pi, β-γ-methylene adenosine 5′-triphosphate or the chromium (III) complex of ATP. Ouabain inhibits the K+ release from resealed ghosts in the presence as well as absence of ATP. Ouabain also inhibits the palytoxin-triggered Na+ and choline efflux into Na+ medium, as well as the Na+, K+ and choline efflux into choline medium. Phosphate promotes the inhibitory action of ouabain. Incorporated vanadate or Mg2+ do not change the sensitivity of ghosts toward palytoxin. 2. External calcium down to 10 μM potentiates the action of palytoxin in ghosts resealed with or without ATP. In contrast to calcium ionophore A23187, palytoxin does not raise the influx of Ca2+. 3. Palytoxin triggers the formation of small pores in resealed ghosts. The efflux into Na+ medium decreases in the order K+≧Na+〉[3H]choline≫[14C]inositol〉[14C]sucrose, [3H]inulin≅0. Our data suggest that palytoxin, once bound to erythrocyte membranes, transforms the sodium pump, or its functional vicinity, into a pore allowing the passive transport of small ions. This process is assisted by ATP from inside whereas Ca2+ promotes from the outside the efficacy of palytoxin.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 316 (1981), S. 143-148 
    ISSN: 1432-1912
    Keywords: Tetanus toxin ; Botulinum toxin ; Acetylcholine ; Calcium ; Brain
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Slices or particles from rat forebrain cortex were preloaded with [3H]choline, and the release of [3H]acetylcholine was evoked with potassium ions in a superfusion system. Release depended on the presence of calcium. 1. Incubation of the preloaded tissue preparation for 2 h with tetanus or botulinum A toxin did not change the [3H]acetylcholine content or the ratio [3H]acetylcholine/[3H]choline. Tetanus toxin diminished, dependent on dose and time, the release of [3H]acetylcholine evoked by 25 mM K+. It was about ten times more potent than botulinum A toxin. The effect of botulinum toxin was due to its neurotoxin content. Raising the potassium concentration partially overcame the inhibition by the toxins. Hemicholinium-3, applied to preloaded slices, left the subsequent [3H]acetylcholine release unchanged. Pretreatment of particles with neuraminidase diminished the content of long-chain gangliosides to the detection limit. Such particles remained fully sensitive to tetanus toxin, and at least partially sensitive to botulinum A toxin. 2. The potassium or sea anemone toxin II stimulated uptake of 45Ca2+ into cortex synaptosomes or particles was not inhibited by either toxin. Both toxins appear to impede the Ca2+-dependent mobilization of an easily releasable acetylcholine pool, without inhibiting the transmembranal calcium fluxes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 17
    ISSN: 1432-1912
    Keywords: Tetanus toxin ; Botulinum A toxin ; Neurotransmitter ; Uptake ; Release
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The effects of tetanus toxin and botulinum A toxin on the uptake and evoked release of various neurotransmitters were studied using particles from rat forebrain, corpus striatum and spinal cord. 1. Uptake. Tetanus toxin partially inhibits the uptake of glycine and choline into spinal cord synaptosomes. The effect on glycine uptake becomes statistically significant after a lag period of 60\2-120 min. It is no longer present when the toxin is heated, antitoxin-treated or toxoided. The inhibition by botulinum A toxin of choline uptake into spinal cord synaptosomes is weak but measurable, that of glycine uptake is at the borderline of detection. The uptake of GABA into forebrain cortex synaptosomes is slightly inhibited by tetanus toxin but hardly by botulinum A toxin. The effects of tetanus toxin and botulinum A toxin on the uptake of noradrenaline into striatal synaptosomes are negligible. 2. Release. Tetanus toxin inhibits the potassium (25 mM) evoked release of radioactivity from rat forebrain cortex particles preloaded with labelled neurotransmitters. The sensitivity decreases in the following order: Glycine 〉 GABA \2〉 acetylcholine. The toxin also inhibits the release of radioactivity from striatal particles preloaded with labelled noradrenaline. It is always 10\2-50 times more potent on spinal cord than on brain particles. The sensitivity of the evoked release from the spinal cord decreases in the order glycine 〉 GABA 〉 acetylcholine 〉 noradrenaline. The toxin is identical with the causative agent because toxin-antitoxin complexes, toxoid and heated toxin do not influence the release from particles preloaded with glycine (spinal cord), GABA (forebrain) and noradrenaline (striatum). Botulinum toxin resembles tetanus toxin by its ability to diminish the release of radioactivity from preloaded forebrain (acetylcholine 〉 GABA), striatal (noradrenaline), or spinal cord (glycine) particles. The botulinum toxin effect on the striatum (noradrenaline) and on the spinal cord (glycine) is due to its neurotoxin content. The identity of the toxin and the causative agent has been established by preheating and preincubation with antitoxin. It is proposed that a) tetanus and, however to a much lesser degree, botulinum A toxin act in a basically similar manner on a process underlying the function of synapses in general, and b) the pronounced sensitivity of glycine and GABA release from spinal cord, together with the axonal ascent of tetanus toxin, may be crucial in the pathogenesis of tetanus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...