Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Transport in porous media 10 (1993), S. 81-94 
    ISSN: 1573-1634
    Keywords: Capillary dispersion ; hyperdispersion ; fractals ; low saturation ; diffusion equation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Technology
    Notes: Abstract Recent displacement experiments show ‘anomalously’ rapid spreading of water during imbibition into a prewet porous medium. We explain this phenomenon, calledhyperdispersion, as viscous flow along fractal pore walls in thin films of thicknessh governed by disjoining forces and capillarity. At high capillary pressure, total wetting phase saturation is the sum of thin-film and pendular stucture inventories:S w =S tf +S ps . In many cases, disjoining pressure ∏ is inversely proportional to a powerm of film thicknessh, i.e. ∏ ∞h −m , so thatS tf ∞P c −1/m. The contribution of fractal pendular structures to wetting phase saturation often obeys a power lawS ps ∞P c (3−D), whereD is the Hausdorff or fractal dimension of pore wall roughness. Hence, if wetting phase inventory is primarily pendular structures, and if thin films control the hydraulic resistance of wetting phase, the capillary dispersion coefficient obeysD c ∞S w v , where v=[3−m(4−D) ]/m(3−D). The spreading ishyperdispersive, i.e.D c (S w ) rises as wetting phase saturation approaches zero, ifm〉3/(4−D),hypodispersive, i.e.D c (S 2) falls as wetting phase saturation tends to zero, ifm〈3/(4−D), anddiffusion-like ifm=3/(4−D). Asymptotic analysis of the ‘capillary diffusion’ equation is presented.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0271-2091
    Keywords: Coating Flows ; Viscous Flows ; Free Surfaces ; Free Boundaries ; Boundary ; Parameterization Moving Spine Method ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Coating flows are laminar free surface flows, preferably steady and two-dimensional, by which a liquid film is deposited on a substrate. Their theory rests on mass and momentum accounting for which Galerkin's weighted residual method, finite element basis functions, isoparametric mappings, and a new free surface parametrization prove particularly well-suited, especially in coping with the highly deformed free boundaries, irregular flow domains, and the singular nature of static and dynamic contact lines where fluid interfaces intersect solid surfaces. Typically, short forming zones of rapidly rearranging two-dimensional flow merge with simpler asymptotic regimes of developing or developed flow upstream and downstream. The two-dimensional computational domain can be shrunk in size by imposing boundary conditions from asymptotic analysis of those regimes or by matching to one-dimensional finite element solutions of asymptotic equations.The theory is laid out with special attention to conditions at free surfaces, contact lines, and open inflow and outflow boundaries. Efficient computation of predictions is described with emphasis on a grand Newton iteration that converges rapidly and brings other benefits. Sample results for curtain coating and roll coating flows of Newtonian liquids illustrate the power and effectiveness of the theory.
    Additional Material: 20 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...