Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Bradyrhizobium japonicum  (3)
  • Rhizobium japonicum, CO2 fixation  (1)
  • 1
    ISSN: 1432-072X
    Keywords: Hydrogenase ; Ribulosebisphosphate carboxylase ; Hydrogen uptake ; Rhizobium japonicum, CO2 fixation ; Propionyl coenzyme A carboxylase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract H2-uptake positive strains (122 DES and SR) and H2-uptake negative strains SR2 and SR3 of Rhizobium japonicum were examined for ribulosebisphosphate (RuBP) carboxylase and H2-uptake activities during growth conditions which induced formation of the hydrogenase system. The rate of 14CO2 uptake by hydrogenase-derepressed cells was about 6-times greater in the presence than in the absence of H2. RuBP carboxylase activity was observed in free-living R. japonicum strains 122 DES or SR only when the cells were derepressed for their hydrogenase system. Hydrogenase and RuBP carboxylase activities were coordinately induced by H2 and both were repressed by added succinate. Hydrogenase-negative mutant strains SR2 and SR3 derived from R. japonicum SR showed no detecyable RuBP carboxylase activities under hydrogenase derepression conditions. No detectable RuBP carboxylase was observed in bacteroids formed by H2-uptake positive strains R. japonicum 122 DES or SR. Propionyl CoA carboxylase activity was consistently observed in extracts of cells from free-living cultures of R. japonicum but activity was not appreciably influenced by the addition of H2. Neither phosphoenolpyruvate carboxylase nor phosphoenolpyruvate carboxykinase activity was detected in extracts of R. japonicum.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-072X
    Keywords: Bradyrhizobium japonicum ; Hupc mutants ; Hydrogenase apoprotein ; Nickel metabolism ; Nickel incorporation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A double mutant (JH103K10) was created from hydrogenase constitutive mutant (JH103) by replacement of a chromosomal 0.60 kb nickel metabolism related locus with a kanamycin resistance gene. The double mutant required 10 to 20 times more nickel (Ni) to achieve near parental strain levels of hydrogenase activity. In the absence of nickel, both JH103K10 and JH103 synthesized high levels of (inactive) hydrogenase apoprotein (large subunit, 65 kDa). With nickel, the double mutant JH103K10 synthesized the same level of hydrogenase apoenzyme (65-kDa subunit) as the JH103 parent strain; however, whole cell hydrogenase activity in JH103K10 was less than half of that in JH103, and the CPM (due to 63Ni in hydrogenase) of membranes and the calculated ratio of nickel per unit of hydrogenase enzyme of the double mutant were 40% of that in JH103. Therefore, the difference in hydrogenase activities between the double mutant and the Hupck strain can be accounted for by different abilities of the strains to incorporate nickel into the hydrogenase apoenzyme. The addition of nickel ions to previously Ni-starved and then chloramphenicol-treated Bradyrhizobium japonicum whole cells (JH103 and JH103K10) resulted in (an in vivo) restoration of hydrogenase activity, suggesting that the apoprotein synthesized in the Ni-free cultures could be activated by addition of nickel even in the absence of protein synthesis. The extent of reconstitution of active hydrogenase by nickel was greater in the absence of chloramphenicol. Hydrogenase apoprotein could not be activated by nickel in vitro even with the addition of ATP. The successful in vivo but not in vitro results suggest that enzymatic but cell-disruption labile factors are required for Ni incorporation into hydrogenase.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 160 (1993), S. 43-50 
    ISSN: 1432-072X
    Keywords: Hydrogenase ; Gene expression ; Bradyrhizobium japonicum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Plasmid-borne hup-lacZ transcriptional fusion constructs were introduced into three separate mutant strains of Bradyrhizobium japonicum which express hydrogenase constitutively (Hupc strains SR470, SR473 and JH101) in both autotrophic and heterotrophic environments. The lacZ structural gene linked directly to the regulatory region upstream of the hydrogenase structural gene encompassing -149 bases expressed β-gal at a constant, high level, in response to various concentrations of Ni (0 μM to 1 μM). β-Gal activity was expressed at a constant level in response to variations in concentration of O2 (0%–10%) and H2 (0%–10%) as well. The cis-acting region required to express hydrogenase constitutively is located between -149 and -98 bases. This is also the site of nickel, oxygen and hydrogen-dependent regulatory action in the wild-type strain. It is postulated that a single mutation in Hupc strains affects the trans-acting factor which would normally by responsive to Ni, O2 and H2.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1572-8773
    Keywords: Bradyrhizobium japonicum ; divalent cations ; hydrogenase ; metal accumulation ; metal transport
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Hydrogenase-constitutive (Hupc) mutants of Bradyrhizobium japonicum were previously shown to accumulate more nickel than the wild-type strain. In a 2 h period Hupc strains JH101 and JH103 also accumulated 2- to 3-fold more Mg2+, Zn2+ and Cu2+, and about 4-fold more Co2+ and Mn2+ than the wild-type strain JH. Init uptake rates (first 10 min) by the Hupc strains were also greater for all the metals. The mutation in the Hupc strains affecting a trans-acting regulator of the hup structural genes appears to have also amplified a metal uptake/accumulation process common to many divalent metal ions. From efflux experiments (suspension of cells in metal-free medium after metal accumulation) to determine the degree of dissociation of each metal with the cells it was concluded that Zn2+, like Ni2+, was rapidly and tightly cell-associated. In contrast, about 50% of the accumulated Cu2+ and about 30% of the Mn2+ was effluxed within 2 h by both the Hupc and wild-type strains. Cobalt was more tightly cell-associated than Mn2+ or Cu2+, as the strains effluxed about 26% of the previously accumulated metal in 2 h. Even after accounting for ‘effluxed metal’, the Hupc strains retained more of each metal than the wild-type. The increased metal accumulation by Hupc strains could not be accounted for solely at the level of transport, as known metabolic inhibitors (carbonyl cyanide m-chlorophenylhydrazone and nigericin) of nickel transport partially inhibited (1 h) accumulation of only some (magnesium, zinc and copper) of the other metals. Hydrogenase-derepressed wild-type cells exhibited slightly higher (22–27% more) 2 h accumulation capacity for some of the metals (nickel, zinc and copper) than did non-derepressed cells, but not to the 2- to 4-fold greater level observed for Hupc strains compared with the wild-type. The Hupc strains JH101 and JH103 do not synthesize more capsular/cell wall carbohydrate than the wild-type strain.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...