Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Numerical Methods for Partial Differential Equations 11 (1995), S. 617-624 
    ISSN: 0749-159X
    Keywords: Mathematics and Statistics ; Numerical Methods
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics
    Notes: A second-order-accurate and unconditionally stable operator-splitting algorithm for the three-dimensional diffusion equation is presented in this article. The governing equation is split into three one-dimensional equations, and the split equations are solved by a finite-element method. The simulation characteristics of the algorithm are demonstrated by numerical experiments. © 1995 John Wiley & Sons, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 15 (1992), S. 1119-1141 
    ISSN: 0271-2091
    Keywords: Integral equation ; Overturning progressive waves ; Breaking standing waves ; Sloshing ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: On the basis of the integral equation approach, numerical algorithms for solving non-linear water wave problem are presented. The free surface flow is assumed to be irrotational. Two different Green functions are used in the integral equations. The non-linear free-surface boundary conditions are treated by a time-stepping Lagrangian technique. Several numerical examples are given, including permanent periodic waves, overturning progressive waves, breaking standing waves and sloshing problems.
    Additional Material: 17 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...