Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Bromus Carex Elevated carbon dioxide Functional growth analysis Water relations  (1)
  • Nutrient limitation  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 125 (2000), S. 380-388 
    ISSN: 1432-1939
    Keywords: Bromus Carex Elevated carbon dioxide Functional growth analysis Water relations
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. It has been suggested that positive biomass responses of grassland to elevated CO2 result from moisture savings in the soil as opposed to direct photosynthetic stimulation. In order to test this hypothesis for calcareous grassland we subjected experimental communities consisting of two important graminoid components of such grasslands (Carex flacca and Bromus erectus) on natural substrate to a fully factorial treatment of ambient (360 ppm) and elevated (600 ppm) CO2 concentration and four irrigation regimes (9 mm, 18 mm, 27 mm and 36 mm week–1). Biomass stimulation under elevated CO2 was higher the lower the irrigation rate was. Superimposed on the effects of irrigation on soil moisture, elevated CO2-induced higher soil water contents in all irrigation treatments via reduced plant water consumption (on average one-third lower stomatal conductance). This led to eight different soil moisture regimes instead of the intended four. When growth parameters were plotted against the effective soil water content rather than irrigation treatment, the "pure" CO2 effect on total biomass and other traits became much smaller and completely disappeared for biomass per tiller, leaf area per ground area, leaf mass fraction (LMF) and root mass fraction (RMF). We conclude that the CO2 response observed in this graminoid system consisted of a small primary CO2 effect and a large secondary, CO2-induced, soil moisture effect. Thus, it is difficult to use responses to CO2 from experiments in which CO2-induced soil moisture savings occur to predict CO2 effects as long as future soil moisture regimes are not defined. We suggest that direct and indirect (moisture driven) CO2 effects should be strictly separated, which requires data to be tested against soil moisture.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1939
    Keywords: Key words Dinitrogen fixation ; Plant functional types ; legumes ; Nutrient limitation ; Phosphorus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Plant nutrient responses to 4 years of CO2 enrichment were investigated in situ in calcareous grassland. Beginning in year 2, plant aboveground C:N ratios were increased by 9% to 22% at elevated CO2 (P 〈 0.01), depending on year. Total amounts of N removed in biomass harvests during the first 4 years were not affected by elevated CO2 (19.9 ± 1.3 and 21.1 ± 1.3 g N m−2 at ambient and elevated CO2), indicating that the observed plant biomass increases were solely attained by dilution of nutrients. Total aboveground P and tissue N:P ratios also were not altered by CO2 enrichment (12.5 ± 2 g N g−1 P in both treatments). In contrast to non-legumes (〉98% of community aboveground biomass), legume C/N was not reduced at elevated CO2 and legume N:P was slightly increased. We attribute the less reduced N concentration in legumes at elevated CO2 to the fact that virtually all legume N originated from symbiotic N2 fixation (%Ndfa ≈ 90%), and thus legume growth was not limited by soil N. While total plant N was not affected by elevated CO2, microbial N pools increased by +18% under CO2 enrichment (P = 0.04) and plant available soil N decreased. Hence, there was a net increase in the overall biotic N pool, largely due increases in the microbial N pool. In order to assess the effects of legumes for ecosystem CO2 responses and to estimate the degree to which plant growth was P-limited, two greenhouse experiments were conducted, using firstly undisturbed grassland monoliths from the field site, and secondly designed `microcosm' communities on natural soil. Half the microcosms were planted with legumes and half were planted without. Both monoliths and microcosms were exposed to elevated CO2 and P fertilization in a factored design. After two seasons, plant N pools in both unfertilized monoliths and microcosm communities were unaffected by CO2 enrichment, similar to what was found in the field. However, when P was added total plant N pools increased at elevated CO2. This community-level effect originated almost solely from legume stimulation. The results suggest a complex interaction between atmospheric CO2 concentrations, N and P supply. Overall ecosystem productivity is N-limited, whereas CO2 effects on legume growth and their N2 fixation are limited by P.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...