Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Colloid & polymer science 259 (1981), S. 220-226 
    ISSN: 1435-1536
    Keywords: NMR ; polymers ; molecular motions ; entanglements
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Description / Table of Contents: Zusammenfassung Die Solid-Echo-Technik wurde auf die Bestimmung der restdipolaren und restquadrupolaren Kopplung in Schmelzen von Polyäthylen (PE) und deuteriertem PE angewandt. Die Restkopplung, definiert durch die Wurzel aus dem zweiten Moment, beträgt etwa 1% der entsprechenden Kopplung im festen Zustand. Sie nimmt mit steigendem Molekular-gewicht zu, nimmt aber ab mit steigender Temperatur. Eine theoretische Behandlung von zeitabhängigen Restkopplungen ergibt eine Zerfallzeit, die in PE-Schmelzen etwa 0.1 ms beträgt und die innerhalb der Fehlergrenzen unabhängig von Molekulargewicht und Temperatur ist. Die Restkopplung wird im Zusammenhang mit der Kettenverhakung in PE diskutiert. Experimentell bestimmte Spin-Gitter- und Spin-Spin-Relaxationszeiten werden mit der schnelleren segmentalen Bewegung in PE in Beziehung gebracht.
    Notes: Summary The solid echo technique is applied to determining residual dipolar and quadrupolar couplings in molten polyethylene (PE) and deuterated PE, respectively. The residual coupling defined by the square root of the second moment is about 1% of the corresponding quantity in the solid. It increases with molecular weight, and decreases with rising temperature. A theoretical treatment of time dependent residual couplings yields a decay time that is found experimentally to be about 0.1 ms in molten PE, and independent of molecular weight and temperature within our limits of accuracy. The residual coupling is discussed in relation with chain entanglement in PE. Measurements of the spin-lattice and spin-spin relaxation time are related with the more rapid segmental motion of PE chains.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of statistical physics 77 (1994), S. 1007-1025 
    ISSN: 1572-9613
    Keywords: Brownian dynamics simulations ; colloidal hard spheres ; polydispersity ; random close packing
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Recently we presented a new technique for numerical simulations of colloidal hard-sphere systems and showed its high efficiency. Here, we extend our calculations to the treatment of both 2- and 3-dimensional monodisperse and 3-dimensional polydisperse systems (with sampled finite Gaussian size distribution of particle radii), focusing on equilibrium pair distribution functions and structure factors as well as volume fractions of random close packing (RCP). The latter were determined using in principle the same technique as Woodcock or Stillinger had used. Results for the monodisperse 3-dimensional system show very good agreement compared to both pair distribution and structure factor predicted by the Percus-Yevick approximation for the fluid state (volume fractions up to 0.50). We were not able to find crystalline 3d systems at volume fractions 0.50–0.58 as shown by former simulations of Reeet al. or experiments of Pusey and van Megen, due to the fact that we used random start configurations and no constraints of particle positions as in the cell model of Hoover and Ree, and effects of the overall entropy of the system, responsible for the melting and freezing phase transitions, are neglected in our calculations. Nevertheless, we obtained reasonable results concerning concentration-dependent long-time selfdiffusion coefficients (as shown before) and equilibrium structure of samples in the fluid state, and the determination of the volume fraction of random close packing (RCP, glassy state). As expected, polydispersity increases the respective volume fraction of RCP due to the decrease in free volume by the fraction of the smaller spheres which fill gaps between the larger particles.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...