Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 8 (1988), S. 165-179 
    ISSN: 0271-2091
    Keywords: Unsteady laminar boundary layer ; Buoyancy effect ; Non-iterative finite difference method ; Boundary layer singularity ; Separated flow region ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A numerical method is developed to solve the coupled unsteady laminar momentum and thermal boundary layers over a circular cylinder impulsively started from rest. The present non-iterative finite difference method, which requires relatively fewer grid points in the reversed flow region than any other method, can easily handle the separating boundary layer flows. The results indicate that the present method has accuracy comparable with the earlier methods, while consuming computer time approximately one order of magnitude less.The present numerical method allowed investigation of the effect of buoyancy parameter on the starting boundary layer. The time-dependent behaviour of the boundary layer is studied in terms of the appearance of the singularity, the distribution of skin friction and wall heat flux, and the wall position of the inflection point of the velocity profile. The transient as well as buoyancy-dependent patterns of the streamlines and isotherms are also studied.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 11 (1990), S. 317-329 
    ISSN: 0271-2091
    Keywords: FEM-FDM blending technique ; Multiply connected domain ; Pair of circular cylinders ; Symmetric, antisymmetric and asymmetric vortices ; Bistable nature ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Interactive vortex shedding in the multiply connected domain formed by a pair of circular cylinders is analysed by the FEM-FDM blending technique. The vorticity-streamfunction formulation is used to solve the incompressible Navier-Stokes equations at Re = 100, with the time-dependent wall streamfunctions determined from the pressure constraint condition and the far-field streamfunctions from the integral series formula developed earlier by the authors. The standard Galerkin finite element method is used in the relatively small FEM subdomain and the finite difference method based on the general co-ordinate system in the rest of the flow domain. Symmetric, antisymmetric and asymmetric wake patterns are obtained confirming the earlier experimental findings. The bistable nature of the asymmetric vortex shedding as well as the intermittent drifting from one status to the other between symmetric and antisymmetric wake patterns are reported.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...