Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 168 (1991), S. 639-646 
    ISSN: 1432-1351
    Keywords: Lorenzinian ampulla ; Discharge frequency ; Electroreception ; Neurotransmitter ; Primary synapse ; Amino acids ; l-glutamate ; l-aspartate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Dissected ampullae of Lorenzini of the skate (Raja clavata) were studied with the aim of determining the synaptic transmitter between electroreceptor cell and afferent fibre. Resting activity and stimulus-evoked activity in response to electrical pulses were recorded in single afferent units at constant perfusion with normal and test solutions containing different putative neurotransmitters. Presynaptic transmitter release was blocked by Mg2+ (up to 50 mM) to investigate the effects of the test substances upon the postsynaptic membrane. l-Glutamate (l-GLU) and l-aspartate (l-ASP), both at concentrations between 10-7 and 10-3 M, enlarged strongly resting and stimulus-evoked discharge frequency in the afferent fibre. If transmission was blocked by high Mg2+, resting discharge frequency could be restored by l-GLU or l-ASP. The glutamate agonists quisqualate (10-8–105 M) and N-methyl-D-aspartate (10-5–10-3 M) enlarged spontaneous activity in the afferent fiber. The same was found for kainic acid (10-9–10-5 M). Taurine at concentrations between 10-5 and 10-3 M caused a concentration-dependent decrease in afferent activity. The same was found for gammaaminobutyric acid (GABA; 10-5–10-4 M), and for the catecholamines adrenaline and noradrenaline, both in concentrations between 10-5 and 10-3 M. Serotonine (10-5–10-3 M) and dopamine (10-5-10-3 M) had no effect on resting or evoked activity in the Lorenzinian ampulla afferents. Acetylcholine (ACh; 10-4 M) enlarged discharge frequency in those units with initial rates lower than 22–25 Hz, but diminished discharge frequency in fibres with initial activity higher than 25 Hz. When synaptic transmission was blocked by high Mg2+ solution, perfusion with additional ACh did not restore resting activity in the afferent fibre. The results suggest that the most probable transmitter in the afferent synapse of the ampullae of Lorenzini is l-GLU or l-ASP, or a substance of similar nature.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1351
    Keywords: Electroreceptors ; Lorenzinian ampulla ; Afferent synapse ; Neurotransmitters ; Pharmacology ; Amino acid antagonists
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary 1. The effects of excitatory amino acid antagonists on synaptic transmission in the ampullae of Lorenzini of the skate Raja clavata were studied. 2. At concentrations of 10-3 to 10-6 M, l-glutamic acid diethylester (GDEE) and l-glutamic acid dimethylester (GDME) decreased the resting afferent discharge frequency as well as the electrically evoked activities and depressed the responses to application of excitatory amino acids. 3. d-α-Aminoadipic acid (AA) and 2-amino-4 phosphonobutyric acid (APB) had practically no effect either on resting afferent discharge or on evoked afferent activity. 4. 2-Amino-5-phosphonovaleric acid (APV) reduced the resting afferent discharge and electrically evoked activity in the afferent fibres. APV blocked N-methyl-d-aspartate (NMDA) induced responses at a lower concentration than those induced by aspartate. 5. Responses caused by NMDA were Mg2+-dependent; those to quisqualate (Q) application depended to a lesser degree on the Mg2+ concentration. 6. Cis-2,3-piperidinedicarboxylic acid (PDA) blocked both the resting afferent discharge and the electrically evoked activity; it also reversibly blocked the postsynaptic, amino acid-induced responses. The l-glutamate (l-GLU) response was more resistant to the blockade than the l-aspartate (l-ASP) response. 7. Both kynurenic acid (KEN) and γ-d-glutamylglycine (DGG) reduced the resting and evoked activities in the afferent fibres. l-ASP was more resistant to blockade by KEN than l-GLU. 8. These observations suggest a prominent physiological role of quisqualate-, kainate- and NMDA-preferring receptors in the ampullae of Lorenzini of Raja clavata.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 67 (1987), S. 153-162 
    ISSN: 1432-1106
    Keywords: C-fibres ; Evoked cerebral potentials ; Ultralate components ; Pain ; Man ; Adaptive filter ; Single trial EEG analysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Brief radiant heat pulses, generated by a CO2 laser, were used to activate slowly conducting afferents in the hairy skin in man. In order to isolate C-fibre responses a preferential A-fibre block was applied by pressure to the radial nerve at the wrist. Stimulus estimation and evoked cerebral potentials (EP), as well as reaction times, motor and sudomotor activity were recorded in response to each stimulus. With intact nerve, the single supra-threshold stimulus induced a double pain sensation: A first sharp and stinging component (mean reaction time 480 ms) was followed by a second burning component lasting for seconds (mean reaction time 1350 ms). Under A-fibre block only one sensation remained with characteristics and latencies of second pain. The heat pulse evoked potential consisted of a late vertex negativity at 240 ms (N240) followed by a prominent late positive peak at 370 ms (P370). Later activity was not reliably present. Under A-fibre block this late EP was replaced by an ultralate EP beyond 1000 ms, which in the conventional average looked like a slow halfwave of 800 ms duration. This potential was distinct from eye movements, skin potentials or muscle artefacts. With cross-correlation methods waveforms similar to the N240/P370 were detected in the latency range from 900 to 1500 ms during A-fibre block, indicating a much greater latency jitter of the ultralate EP. Latency corrected averaging with a modified Woody filter yielded a grand mean ultralate EP (N1050/P1250), the shape of which was surprisingly similar to the late EP (N240/P370). The similarity of these components indicates that both EPs may be secondary responses to afferent input into neural centers, onto which myelinated and unmyelinated fibres converge. Such convergence may also explain through the known mechanisms of short term habituation and selective attention, why ultralate EPs are not reliably present without peripheral nerve block.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...