Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0428
    Keywords: Islet amyloid polypeptide (IAPP) ; amylin ; insulin ; messenger RNA (mRNA) ; in situ hybridization ; streptozotocin ; dexamethasone
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Islet amyloid polypeptide (IAPP) is over-expressed relative to insulin under several experimental conditions relevant to diabetes mellitus, including the immediate phase (7 days) following induction of streptozotocin diabetes. In the present study, IAPP and insulin gene expression were examined in chronic streptozotocin diabetes (3 weeks) in rats. Quantitative in situ hybridization, determining grain areas and optical densities of mRNA labelling, revealed that IAPP and insulin expression were reduced at the islet level at both low and high streptozotocin doses, partly due to reduced beta-cell mass. In contrast, the cellular levels of IAPP mRNA were either increased or unaffected at the low and high streptozotocin doses, respectively, whereas those of insulin mRNA were unaffected or reduced. When dexamethasone was administered to rats given the low streptozotocin dose, IAPP expression was increased, whereas that of insulin was markedly reduced. Immunocytochemistry revealed that IAPP predominantly occurred in insulin cells and to a lesser extent in somatostatin cells at all treatments examined. Our findings demonstrate that IAPP and insulin gene expression are differentially regulated; the over-expression of IAPP relative to insulin is augmented when the beta-cell insult is aggravated, in our experiments represented by massive beta-cell destruction (high streptozotocin dose) or a combination of moderate beta-cell damage and peripheral insulin resistance (low streptozotocin dose and dexamethasone). An over-expression of IAPP relative to insulin may therefore be involved in diabetes pathogenesis, contributing to its metabolic perturbations, possibly through the capacity of IAPP to restrain insulin release and action and to form islet amyloid.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0428
    Keywords: Keywords Islet amyloid polypeptide (IAPP) ; amylin ; insulin ; messenger RNA (mRNA) ; in situ hybridization ; streptozotocin ; dexamethasone.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Islet amyloid polypeptide (IAPP) is over-expressed relative to insulin under several experimental conditions relevant to diabetes mellitus, including the immediate phase (7 days) following induction of streptozotocin diabetes. In the present study, IAPP and insulin gene expression were examined in chronic streptozotocin diabetes (3 weeks) in rats. Quantitative in situ hybridization, determining grain areas and optical densities of mRNA labelling, revealed that IAPP and insulin expression were reduced at the islet level at both low and high streptozotocin doses, partly due to reduced beta-cell mass. In contrast, the cellular levels of IAPP mRNA were either increased or unaffected at the low and high streptozotocin doses, respectively, whereas those of insulin mRNA were unaffected or reduced. When dexamethasone was administered to rats given the low streptozotocin dose, IAPP expression was increased, whereas that of insulin was markedly reduced. Immunocytochemistry revealed that IAPP predominantly occurred in insulin cells and to a lesser extent in somatostatin cells at all treatments examined. Our findings demonstrate that IAPP and insulin gene expression are differentially regulated; the over-expression of IAPP relative to insulin is augmented when the beta-cell insult is aggravated, in our experiments represented by massive beta-cell destruction (high streptozotocin dose) or a combination of moderate beta-cell damage and peripheral insulin resistance (low streptozotocin dose and dexamethasone). An over-expression of IAPP relative to insulin may therefore be involved in diabetes pathogenesis, contributing to its metabolic perturbations, possibly through the capacity of IAPP to restrain insulin release and action and to form islet amyloid. [Diabetologia (1996) 39: 649–657]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    European journal of clinical pharmacology 40 (1991), S. 379-381 
    ISSN: 1432-1041
    Keywords: Insulin ; glibenclamide ; C-peptide ; insulin catabolism ; diabetes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Medicine
    Notes: Summary In eight patients with uncomplicated non insulin dependent diabetes mellitus, serum insulin levels, serum C-peptide levels and blood glucose levels were measured before and after oral administration of glibenclamide 0.1 mg/kg body weight and a test meal, or after a test meal alone. The rise in serum insulin levels persisted longer after glibenclamide. The initial rise in serum insulin was of the same magnitude in both situations, as was the rise in serum C-peptide levels during the entire 5 h study. It is concluded that glibenclamide is able to maintain a more protonged increase in serum insulin levels by inhibiting the degradation of insulin in the vascular endothelial cells of the liver. The inhibition contributes to the blood glucose lowering effect of glibenclamide.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...